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1. Introduction

In recent years, a rash of research has begun to show some analytical benefits that the
weighted constraints of Harmonic Grammar (HG: Legendre et al. 1990, 2006, Pater 2009b,
2016) offer over the ranked constraints of Optimality Theory (OT: Prince & Smolensky
1993/2004, McCarthy & Prince 1995). The major difference in constraint interaction be-
tween the theories comes from gang up effects. While gang effects often allow complex
data to be analyzed elegantly with fewer, more basic constraints than needed in OT, (as in
Pater (2009a), Potts et al. (2010), Jesney (2011, 2016) among many others) some observed
patterns are difficult to analyze in HG using mainstream representational assumptions. Here
in this paper, we examine unbounded harmony processes, which are particularly difficult
to model in parallel Harmonic Grammar.

The critical difficulty for modeling harmony in HG is that in harmony patterns one
trigger segment can cause a featural change in a potentially unbounded number of target
segments. This is particularly dangerous in control-harmony systems (a la Baković (2000)),
where one privileged position’s underlying feature value spreads, regardless of whether it
is [+F] or [−F]

Consider Tuvan, a Turkic language with backness harmony (Harrison 2000, Rose &
Walker 2011). If the first vowel of the stem is [+back], so is the rest of the word, including
the suffixes, as in (1); but if it is [−back], all the other vowels must be [−back] as well, (2).

(1) a. at-tar-Wm-dan ‘name’PL-1-ABL

b. udu-ba-dW-m ‘sleep’NEG-PST.II-1
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(2) a. is-ter-im-den ‘footprint’PL-1-ABL

b. esker-be-di-m ‘notice’NEG-PST.II-1

By the principle of Richness of the Base (Prince & Smolensky 1993/2004), all linguistically
possible inputs must map to a word that could be grammatical in Tuvan. Since all native
Tuvan words maintain the same backness throughout all of their vowels, this cannot be
explained through prespecification without some constraints on the input. With a high-
ranked harmony driving markedness constraint1

With just simple faithfulness constraints, OT predicts majority rules pathologies as in
(3). The backness of the word is entirely dependent on whichever feature there were more
of in the input. Majority Rules languages have long been considered pathological (Lom-
bardi 1999, Baković 2000, Riggle 2004, Heinz & Lai 2013), and experimental artificial
language learning results from Finley (2008) back up this claim. This can be solved by
adding a positional faithfulness constraint to select a specific vowel (often, and for Tu-
van, the initial or the stem) that is always ranked above the general constraint, keeping the
privileged vowel faithful to serve as the trigger (4) (Beckman 1998).2

(3) Majority Rules in OT
/+ - - -/ AGREE(F) ID(F)

a. + + + + ∗∗∗W
� b. - - - - ∗
/+ - + +/ AGREE(F) ID(F)
� c. + + + + ∗

d. - - - - ∗∗∗W

(4) Positional Faithfulness Can Solve Majority Rules in OT
/+ - - -/ AGREE(F) ID(F)/σ1 ID(F)

� a. + + + + ∗∗∗
b. - - - - ∗W ∗L

/+ - + +/ AGREE(F) ID(F)/σ1 ID(F)
� c. + + + + ∗

d. - - - - ∗W ∗∗∗W

This problem is not so easily resolved in HG. HG is by its nature a more democratic system
than OT. While a violation of a high weighted constraint has more power than a violation
of a lower weighted constraint, this difference is finite. In other words, a violation in the
privileged position basically gets some finite number more votes than any violation else-

1AGREE(F) is used here, but any harmony driver can achieve this.
2This solution is not without its issues, as it requires a restriction of the factorial typology; and in cases

where no segment is most privileged (i.e. voicing assimilation in coda clusters), can still create majority rules
effects (Baković 2000), as well as having issues handling systems with segments that block or are transparent
to harmony.
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where, but once enough violations of the lower weighted constraints join the gang, they
can overpower the high weighted constraint.

In (5), we can see that the initial segment’s faithulness violation is worth w(ID(F)/σ1)+
w(ID(F)), or 4; where the other segments’ violations are worth just w(ID(F))=1. Thus the
initial syllable controls the direction of harmony when disagreeing segments outnumber
agreeing segments by less than four (as they do with /+−−−/). A majority rules type
harmony occurs when there are more than 4 disagreeing segments, as with /+−−−−−/.

(5) HG is more democratic than OT
/+−−−/ AGREE(F) ID(F)/σ1 ID(F) H

w = 5 w = 3 w = 1 H

� a. ++++ -3 -3
b. −−−− -1 -1 -4

/+−−−−−/ AGREE(F) ID(F)/σ1 ID(F) H
c. ++++++ -5 -5

� d. −−−−−− -1 -1 -4

These number sensitive effects are quite problematic for theories of weighted constraints.
They are caused by unbounded tradeoffs (Legendre et al. 2006, Pater 2016), which will be
discussed in section 2. This paper will show that this unbounded tradeoff cannot be solved
solely through reformulation of markedness constraints (section 3), and proposes a strategy
that modifies the faithfulness constraints and the representational assumptions (section 4).
Section 5 closes with discussion of implications and issues.

2. Unbounded Tradeoff Problem

As mentioned above, the critical locus of difference between OT and HG is in gang effects.
Pater (2016) frames these in terms of asymmetric tradeoffs. Tradeoffs are apparent when
comparing two output candidates.

(6) A tableau features an asymmetric trade-off iff there are two candidates a,b where
the violation difference between a and b is such that n violations of one constraint
C1 favor a, and some m > n violations of another constraint(s) C2 favor b.

On their own, on a one tableau scale, asymmetric tradeoffs are relatively uninteresting.
If every candidate pair across the language has the same asymmetric tradeoff on C1 and
C2, then we only care whether nw(C1) > mw(C2), or vice versa. We can call this a n−
m tradeoff. However, if we see other tradeoffs for the same two constraints, say a n− p
tradeoff (p 6= m), there are more predicted languages in HG than OT given the same set of
constraints. Consider ID(F) and ID(F)/σ1 in (5). There is both a 3-1 tradeoff for the first
input, and a 5-1 tradeoff for the second. In OT, we have a two types of languages, C1�C2
and C2�C1. However, in HG two weighting conditions now matter, that between nw(C1)
and mw(C2), and that between nw(C1) and pw(C2).
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Typically these asymmetric tradeoffs have a restricted effect, often capturing things
that OT misses, say where one new violation of a faithfulness constraint can be traded for
a gang up of violations of multiple markedness constraints, in some contexts, but just one
violation in others. However with most sets of constraints, there are a bounded number of
crucial weighting conditions, since one violation of a constraint can only trade for some
bounded number of violations of other constraints.

Yet, with the appropriate set of constraints, unbounded tradeoffs can be produced by
HG, where an unbounded number of 1−n tradeoffs occur, between two constraints. Leg-
endre et al. (2006) discuss an unbounded tradeoff between MAINSTRESSRIGHT, which is
a gradient ALIGN constraint that is violated by each syllable that intervenes between the
main stressed syllable and the right edge of the word; and WEIGHT-TO-STRESS which
assigns a violation mark to a stressed syllable if it is not heavy.

(7) Legendre et al. (2006)’s Unbounded Tradeoff
banσnta MAINSTRESSRIGHT WEIGHT-TO-STRESS HARMONY

w = A w = B
a. "ban.σn.ta -1-n -(1+n)(A)
b. ban.σn."ta -1 -B

In (7), σn represents n light syllables. We can see here that stress must either fall on the
leftmost syllable, satisfying WEIGHT-TO-STRESS, or on the right most syllable, satisfying
MAINSTRESSRIGHT. Note that MAINSTRESSRIGHT incurs more violations dependent on
how long the word is, creating asymmetric tradeoffs, where some larger number of viola-
tions of MAINSTRESSRIGHT are traded for one violation of WEIGHT-TO-STRESS. In OT,
this is no problem, as the winning candidate is dependent only on constraint ranking, not on
word length. However in HG, the gang effects weaken WEIGHT-TO-STRESS’s attempts at
dominance. No matter how high weighted WEIGHT-TO-STRESS is and how low weighted
MAINSTRESSRIGHT is, there exists some number n so that (1+n)A > B. In other words,
since constraint weights are positive numbers, there is no weighting so that all 1−n trade-
offs prefer the same candidate.

This creates pathological counting languages, where words of this shape that have less
than n syllables have quantity sensitive stress, but longer words have rightmost stress. Since
there is no theoretical upper bound on word size, this creates an infinite typology in HG,
for all integers n ≥ 0, since there are an infinite number of distinct weighting conditions
created by all the 1−n tradeoffs.

Pater (2016) notes that this example, with these sets of constraints, is not particularly
persuasive because other stress constraints could be considered, and these constraints are
controversial even in OT. However, in stem control harmony, we come across the exact
same issue. Assume a high weighted harmony driver, like AGREE(F), outweighs the faith-
fulness constraints, restricting the potential optimal candidates to the fully harmonic ones.
In (8), we see an asymmetric tradeoff between the positional and general faithfulness con-
straints. This again is an unbounded tradeoff, because as the word length increases un-
boundedly, so does the number of more violations of the general faithfulness constraint.
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These constraints predict an infinite typology of counting languages, where majority rules
effects kick in once there are more than n segments which disagree with the privileged
segment, but control harmony appears elsewhere.

(8) Unbounded Tradeoff in Harmony
+−n− AGREE(F) ID(F)/σ1 ID(F) HARMONY

w = A w = B w =C
a. ++n + -1-n -(1+n)(C)
b. −−n− -1 -1 -(B+C)

There are two options to solve this issue in HG: find a harmony driving markedness con-
straint that obviates this issue and handles it in a phenomenon specific way (which we
will see in section 3 to be impossible), or reevaluate the faithfulness constraints and the
representations that underlie them, leading to much more global theoretical modifications.

3. Majority Rules under any Markedness Constraint

The route of least resistance would be to modify the markedness constraint. Throughout
most work on OT and its relatives, the majority of the research energy has been used discov-
ering more economic or more grounded incarnations of markedness constraints. This has
some obvious causes: markedness constraints are typically phenomenon specific, whereas
the same faithfulness constraint would be used for any phenomenon where it could poten-
tially serve as a possible repair. Thus, a modification of faithfulness theory likely has wide
reaching effects across all phonological phenomena, and may in turn require modifications
to other markedness constraints elsewhere.

However, no modification of markedness constraints can fix the majority rules problem
in HG. This is truly an issue with IDENT(F) constraints in a weighted constraint framework.

To prove this, we will rely on the notion that a HG (or OT) system can only make use of
markedness or faithfulness constraints: Markedness constraints are defined as incurring the
same violations for the given output, regardless of the input; faithfulness constraints are not
violated by an input that maps to itself. This assumption is necessary to prevent circular, or
infinite chain shifts (Moreton 1999).

In order to prevent length based effects, we must show that the grammar is such that for
any n > m > 0, if an initial segment spreads to m segments, it must spread to n segments
as well. Since the weights of ID(F)/σ1 and ID(F) are some positive real numbers, A and
B respectively; there exists some integer k, where k+ 1 is the lowest integer so that k+ 1
violations of ID(F) outweigh one violation of ID(F)/σ1, (i.e (k+1)B≥ A≥ kB). Thus, for
any word with more than k+ 1 syllables, the majority rules candidate is preferred by the
faithfulness constraints. The tableau in (9) shows this for any word with i+k+1 syllables,
where i is any positive integer.
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(9) Harmonic difference over faithfulness
+−i+k+1 ID(F)/σ1 ID(F) H

w = A w = B
a. ++i+k+1 -(i+k+1) −B∗(i+ k+1)

� b. −−i+k+1 -1 -1 −(B+A)

Thus the harmonic difference between /+−i+k+1/→[++i+k+1] and /+−i+k+1/→[−−i+k+1]
over the faithfulness constraints is −B*(i+ k+1)− (B+A). Since B(k+1)≥ A, this dif-
ference must be greater than or equal to i(B).

(10) B*(i+ k+1)− (B+A)≥ (B(i+1)+A)− (B+A) = i(B)

Since faithfulness prefers the majority rules candidate by i(B), if markedness changes could
avoid majority rules pathologies, whatever markedness solution we use must disfavor the
majority rules candidate by more than i(B).

In tableau (11) the MARKEFFECT represents the collapsed effect of all the markedness
constraints in the system. Any harmony-driving constraint, as well as any other marked-
ness constraint that we attempt to use to avoid majority rules pathologies are included
here. In the violation boxes I write the relative harmony scores caused only by markedness
constraints to each candidate. Since the effect of markedness surpasses the harmonic dif-
ference over faithfulness of the two candidates, all inputs of any length harmonize to an
initial syllable with a [+F] feature.

(11) Markedness must prefer ++i+k+1
+−i+k+1 MARKEFFECT ID(F)/σ1 ID(F) H

w = A w = B

� a. ++i+k+1 0 -(i+k+1) −B∗(i+ k+1)
b. −−i+k+1 <−i(B) -1 -1 <−(B(i+1)+A)

However, this now fails us for [−F] harmony. Since markedness constraints make no ref-
erence to the input, the markedness effect must be the same for /+−i+k+1/→[−−n] and
/−+i+k+1/→[−−n] as seen in (12). This means that the markedness effect can join forces
with the gang to defeat the privilege of the initial syllable.

(12) Markedness fails to get /−+i+k+1/→ [−−i+k+1]
−+i+k+1 MARKEFFECT ID(F)/σ1 ID(F) H

w = A w = B

� a. ++i+k+1 -1 -1 −(A+B)
b. −−i+k+1 −i(B) -(i+k+1) −(B(2i+ k+1))

MARKEFFECT represents the overall effect of markedness constraints abstractly, regardless
of which actual constraints we use. Thus, whether we use AGREE or ALIGN or any other
type of harmony driving markedness constraint (even those that have not been considered),
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there is no way to get stem-control harmony without getting majority rules effects. If this
problem is going to be resolved it must be through faithfulness constraints.

4. Modifying Faithfulness and Representations

The unbounded tradeoff that leads to the length-sensitive majority rules-like effect is in-
trinsically linked to the faithfulness constraints. If no markedness constraint can solve this
problem, the only way to solve it in HG is to modify how faithfulness violations are in-
curred.

The critical issue is that the IDENT(F) family of constraints model feature changing,
which is not necessarily the same thing as feature spreading. By adding a level of abstract
representational structure, we can compare feature changing, where each underlying fea-
ture must be replaced by a new feature (13); with feature spreading where one feature just
needs to link to other segments who have lost their underlying feature (14).

(13) Feature Changing [(+)(+)(+)]
+ + +− −

x x x

(14) Feature Spreading [(+++)]3

+ − −

x x x

As a simple replacement for IDENT(F), MAX/DEP(±F) can be used instead, maintain-
ing these distinctions.

(15) MAX(±F)/DEP(±F): Assign a violation mark for any [±F] feature in the in-
put(/output) that does not have an output(/input) correspondent.

Constraints similar to these have been previously used for privative featural accounts, first
suggested in (McCarthy & Prince 1995, ff. 49), and considered in greater detail in Lom-
bardi (2001) 4. My MAX/DEP(±F) account is crucially different as it uses binary features.

With privative features, MAX/DEP(F) obtain an asymmetric effect, similar to that of the
IDENT-IO(+F) and IDENT-IO(-F) of Pater (1999). In (16), the [+F] value of F is treated
as the privative feature value while using the MAX/DEP(F) constraints, showing that the
privative constraints do not assign the same violations for deletion of a [−F] feature as
deletion of a [+F] feature, whereas the binary featured MAX(±F) does. This difference
becomes critical when we see how MAX/DEP(±F) avoids the unbounded tradeoff.

3Throughout the rest of this paper, parentheses () will be used to represent a span of segments linked to
the same feature.

4Also see Causley (1997), Myers (1997), Walker (1997).
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(16) Difference between privative (+F=F,−F= /0) and binary MAX feature constraints
(+)(−) MAX(F) MAX(±F)
a. (+)(+) ∗
b. (++) ∗
(−)(+) MAX(F) MAX(±F)
c. (−)(−) ∗ ∗
d. (−−) ∗ ∗

MAX/DEP(±F) maintains the difference between feature changing and feature spreading.
Unlike IDENT, DEP(±F) is violated more by a segment that is linked to an epenthetic
feature rather than linked to a spreading feature, (17).

(17) Difference between IDENT and DEP(±F)
(+)(−) IDENT(F) DEP(±F)
a. (+)(+) ∗ ∗
b. (++) ∗

On the other hand, outputs with a spread feature, even if the target segments underlyingly
had the same specification for the feature violate MAX(±F) but not IDENT(F), (18). This
is because a segment does not violate IDENT(F) if it is linked to a different feature, but its
specification is the same as in the input.

(18) Difference between IDENT and MAX(±F)
(+)(+) IDENT(F) MAX(±F)
a. (+)(+)
b. (++) ∗

In order to get the most out of the difference between IDENT(±F) and MAX(±F), it
is crucial that the harmony driving markedness constraint always trades one-to-one with
MAX(±F). This is achieved by using a markedness constraint that prefers adjacent seg-
ments linked to the same feature over adjacent segments each linked to separate features,
even if the specifications are the same. Following McCarthy (2011) and Mullin (2011), who
use a similar constraint (though associated with privative features), I will call this constraint
SHARE(±F), (19).

(19) SHARE(±F): Assign a violation mark for any segment that is adjacent to another
segment that is linked to a different [±F] feature.5

Now, if all underlying features are linked to just one vowel, both fully harmonic candidates
((20)-a,b) must have violated MAX(±F) once for each feature in the word (except for one,

5This definition should be elaborated depending on theoretical assumptions. Perhaps we mean adjacent
on some tier; and possibly this constraint would need to be relativized to certain domains, like the prosodic
word or the stem or the phonological phrase.
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the spreader). The only thing that distinguishes the candidates is whether the positional
MAX(±F)/σ1 is violated, giving us initial control harmony. Thus, the correct winner (20)-
a, harmonically bounds the majority rules candidate (20)-b; thus in categorical HG there is
no weighting of constraints where we can get majority rules.

(20) No majority rules with MAX/DEP(±F).
/+−n/ SHARE(±F) MAX(±F) MAX (±F)/σ1 H

w = 4 w = 3 w = 1

� a. (++n) -n -3n
b. (−−n) -n -1 -3n-1
c. (+)(−−(n−1)) -1 -(n-1) -3n-1
d. (+)(−)n -n -4n

The partially harmonizing candidate (20)-c is collectively harmonically bounded by the
control harmonizing candidate and the fully faithful candidate (20)-d, as evidenced by the
fact that the winner is chosen solely by which constraint is weighted higher, SHARE(±F)
(20) or MAX(±F) (21). This result is independent of word length, as the tradeoff between
the two constraints is symmetric (both have n violations).

(21) No harmony with high weighted MAX(±F)
/+−n/ MAX(±F) SHARE(±F) MAX (±F)/σ1 H

w = 4 w = 3 w = 1
a. (++n) -n -4n
b. (−−n) -n -1 -4n-1
c. (+)(−−(n−1)) -(n-1) -1 -4n+1

� d. (+)(−)n -n -3n

This solution works equally well to derive harmony to [−F] (22); unlike in a system with
privative features and MAX/DEP(F), none of the constraints we are using differentiate
between feature values when incurring violation marks. In (23), we can see that using
privative [F], the initial control candidate (23)-a is harmonically bounded by the candidate
(23)-b. With MAX/DEP, privative features can only predict dominant-recessive harmony.

(22) DEP/MAX(±F) can get spread of −F
/−+n/ SHARE(±F) MAX(±F) MAX (±F)/σ1 H

w = 4 w = 3 w = 1

� a. (−−n) -n -3n
b. (++n) -n -1 -3n-1
c. (−)(++(n−1)) -1 -(n-1) -3n-1
d. (−)(+)n -n -4n
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(23) Privative features can only spread marked value (here +).
/−+n/ SHARE(F) MAX(F) MAX (F)/σ1 H

w = 4 w = 3 w = 1

� a. (−−n) -n -3n
� b. (++n) -(n-1) -3(n-1)

c. (−)(++(n−1)) -1 -(n-1) -3n-1
d. (−)(+)n -n -4n

Lombardi (1999) and Baković (2000) note that in the absence of a privileged position
controlling the vote, there should be assimilation to the unmarked. Baković (2000) notes
that the feature value specific faithfulness constraints, MAX/DEP(F) or IDENT-IO(+F)/(-
F) fail to capture these patterns except through stipulation; which faithfulness constraint
outranks the other determines the dominant feature, rather than markedness.

With MAX/DEP(±F) markedness again determines that the unmarked feature value
is the dominant one. Let *[−F] be introduced to our system, without its *[+F] counter-
part. This constraint assigns a violation mark for each different [−F] feature linked to any
(non-zero) number of segments in the output. Presuming there is no relevant positional
faithfulness (24), or the positional faithfulness is lower weighted than the *[−F] constraint
(25), we get assimilation to [+F] for all segments, even if there is only one [+F] segment
in the input, and an unbounded number of [−F] segments.

(24) If there is no privileged position, we get assimilation to the unmarked
/+−n/ SHARE(±F) MAX(±F) DEP(±F) *[−F] H

w = 4 w = 3 w = 1 w = 1

� a. (++n) -n -3n
b. (−−n) -n -1 -3n-1
c. (+)(−)n -n -n -4n

(25) If Positional Faithfulness is low, we get assimilation to the unmarked
/−n+/ SHARE(±F) MAX(±F) *[−F] MAX(±F)/σ1 H

w = 4 w = 3 w = 2 w = 1

� a. (++n) -n -1 -3n-1
b. (−−n) -n -1 -3n-2
c. (−)n(+) -n -n -4n

In domains with only [-F] segments, if DEP(±F)+MAX(±F) outweighs *[−F], the sur-
face form also has all [−F] segments, either spread as in (26)-b, or not as in (26)-c, de-
pending on whether SHARE outweighs MAX, i.e. whether spreading happens anywhere. If
DEP(±F)+MAX(±F) is lower than the markedness constraint, we simply see a language
that has no [−F] segments.
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(26) If no +F is in the word, it remains all −F
/−−n/ SHARE(±F) MAX(±F) DEP(±F) *[−F] H

w = 4 w = 3 w = 1 w = 1
a. (++n) -(n+1) -1 -3n-4

� b. (−−n) -n -1 -3n-1
c. (−)(−)n -n -(n+1) -5n-1
d. (+)(+)n -n -(n+1) -(n+1) -8n-4

5. Discussion

We’ve seen that the DEP/MAX(±F) account is largely successful at evading the unbounded
asymmetric tradeoffs predicted by many sets of harmony driving and faithfulness con-
straints. However, plugging this hole seems to spring a leak somewhere else. While this
system has been able to make harmony feature spreading, rather than feature changing, it
can make some odd predictions in feature changing contexts.

Consider a language where [y] is marked by featural cooccurrence constraint *[-back,
+round]. In order to repair the feature value of one [y], say by backing, there must be both
deletion of a [-back] feature, and epenthesis of a [+back] feature. However, if multiple
[y] underlyingly appear next to each other, rather than epenthesizing one feature for each
vowel, one feature could epenthesize and link to all the vowels. This can be caused by an
unbounded tradeoff, but is also possible if constraints are defined to avoid one.

This is due to a word-length effect I call catching up. This occurs because we see
two types of candidates (here faithful, and repairing through harmony), that each violate a
constraint (or set of constraints) a number of times proportional to word length. Thus, if
faithfulness is weighted above segmental markedness, one syllable words are faithful. But,
if constraints that favor the other candidate require at least two syllables but scale in the
same way, eventually, but not immediately, these constraints can make up the gap. Thus,
faithfulness can be more powerful in short words, getting a head start, but the gang up
between segmental markedness and harmony driving eventually catch up, as demonstrated
in (27).

(27) Catching Up in longer words
/by/ MAX(±BK) *y SHARE(±BACK) H

w = 6 w = 3 w = 5

� a. (by) -1 -3
b. (bu) -1 -6

/byty/ MAX(±BK) *y SHARE(±BACK) H
� c. (by)(ty) -2 -1 -11

d. (butu) -2 -12
/bytyly/ MAX(±BK) *y SHARE(±BACK) H

e. (by)(ty)(ly) -3 -2 -19
� f. (butulu) -3 -18
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Here, if we have less than two adjacent syllables with [y] nuclei, they remain faithful.
But, if we have three or more adjacent [y] syllables, they all harmonize and link to a new
[+back] feature, in order to avoid the gang effect of *y and SHARE(±BACK)

This happens because the violation score of the faithful candidates scales faster as
words get longer than the spreading and changing candidate. In (28), the winning can-
didate is the one closer to 0. While the faithful candidate starts behind the repair/spread
candidate, the magnitude of its harmony score increases faster than the other candidate,
because SHARE(±BACK) kicks in at 2 [y]s.

(28) Catching Up

Future work will be needed to evaluate the seriousness of catching up pathologies in
systems with weighted constraints, and if these can be evaded by reevaluating constraints
and representations, or if there is something more intrinsically problematic about them. As-
similation and dissimilation processes likely need constraints that could catch up, creating
a fundamental problem for systems with weighted constraints. Note that this problem is
not restricted to interactions of markedness and faithfulness constraints as presented here,
but could also potentially occur with markedness constraints, creating issues for serial Har-
monic Grammar as well.
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