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Abstract This paper investigates the typology of word-initial and word-final
place of articulation contrasts in stops, revealing two typological skews. First,
languages tend to make restrictions based on syllable position alone, rather
than banning particular places of articulation in word-final position. Second,
restrictions based on place of articulation alone are underrepresented com-
pared to restrictions that are based on position. This paper argues that this
typological skew is the result of an emergent bias found in agent-based models
of generational learning using the Perceptron learning algorithm and MaxEnt
grammar using independently motivated constraints. Previous work on agent-
based learning with MaxEnt has found a simplicity bias (Pater and Moreton
2012) which predicts the first typological skew, but fails to predict the second
skew. This paper analyzes the way that the set of constraints in the grammar
affects the relative learnability of different patterns, creating learning biases
more elaborate than a simplicity bias, and capturing the observed typology.

1 Introduction

A major goal of phonological theory is to develop a model that can gen-
erate the range of possible phonological systems. Particularly in constraint-
based frameworks—Optimality Theory (Prince and Smolensky 1993/2004; Mc-
Carthy and Prince 1995), Harmonic Grammar (Legendre et al. 1990, 2006;
Pater 2016), etc.—a large part of this labor has historically been delegated
to the grammar, the phonological component that explains the mapping
between underlying and surface representations.

The set of possible phonological patterns is deeply connected to the set of
patterns actually observed in the world’s languages, allowing typological re-
sults to be used as evidence in phonological theory. Traditionally, constraint-
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based models of phonology are concerned only with whether or not predicted
patterns are attested, but we may also use the relative rate of attestation of
phonological patterns, which I call the soft typology of the world’s lan-
guages, as evidence for our phonological theories.1 The attestation rate of a
pattern is likely based on a large variety of factors, ranging from perceptual
and articulatory influences (Blevins 2004) to sociolinguistic and sociological
factors. Recent work has focused on the impact of learnability to shape ty-
pology (Pater and Moreton (2012); Staubs (2014); Stanton (2016); Hughto
(2019), and others). Much of this work assumes a Maximum Entropy Har-
monic Grammar (MaxEnt) (Goldwater and Johnson 2003; Hayes and Wilson
2008) as the model of grammar, and the perceptron algorithm as the learning
algorithm (Rosenblatt 1958; Boersma and Pater 2016), and finds that skews
in typological frequency are correlated to which patterns are easy or hard
to learn. Broadly, easy to learn patterns are predicted to be better attested
because they are more likely to be accurately learned across many generations.

But what makes a pattern easy or hard to learn? Is learnability more the
result of grammatical assumptions, such as the set of constraints used, or the
result of the learning algorithm? One possibility is that differences in learn-
ability simply replicate already existing patterns present from grammatical
assumptions. In Optimality Theory and its descendants, there can be more
than one ranking (or weighting) of constraints that results in the same phono-
logical pattern, and some patterns can be generated with more possible rank-
ings than others. The proportion of possible rankings (or weightings) that can
generate a particular pattern is that pattern’s r-volume (Bane and Riggle
2008). Patterns that can be generated with more rankings of constraints have
been argued to be more frequent in synchronic variation and cross-linguistic
typology (Anttila 1997; Coetzee 2002; Bane and Riggle 2008; Anttila 2008).
Are certain patterns easier to learn simply because there are more ways to
learn them? Indeed, some findings about the relative learnability of particular
patterns appears to parallel findings about those patterns’ r-volumes. Staubs
(2014) shows that frequent stress patterns are easier to learn using a MaxEnt
model with the Perceptron learning algorithm, and Bane and Riggle (2008)
show that attested stress patterns have larger r-volumes than unattested pat-
terns using a similar set of constraints to the ones used in Staubs’ simulations.
Further, while Hughto et al. (2014); Hughto and Pater (2017); Hughto (2019)
show that patterns that require gang effects to model in a weighted constraint
grammar are harder to learn than those that do not, Bane and Riggle (2009);
Carroll (2010) note that such patterns tend to have relatively small r-volumes.
From these studies, it is not clear whether the learning bias is just a result of
the skews in r-volume or not. One extreme hypothesis therefore is that the soft
typology of the world’s patterns is correlated to the r-volume of those patterns

1 Some have argued that the computational structure imposed by the grammar on the
search space may create imbalances in the likelihood of some patterns. As an example,
see notions of r-volume (Anttila 1997; Coetzee 2002; Bane and Riggle 2008; Anttila 2008).
See section 4.2 for further discussion of this approach to capturing rates of cross-linguistic
attestation.
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with a particular set of constraints (and that the positions with low r-volumes
will across the board be harder to learn than those with high r-volumes).

At the other extreme, another approach has investigated the relative learn-
ability of different pattern in MaxEnt using a minimally restrictive constraint
set. Pater and Moreton (2012); Moreton et al. (2017) show that MaxEnt learn-
ers with simple, symmetrical, and unrestrictive sets of constraints (GMECCS
or Gradual Maximum Entropy with a Conjunctive Constraint Schema) are
biased towards featurally simpler patterns, resembling typological generaliza-
tions of feature economy (Clements 2003). Where the r-volume of patterns
using some particular set of constraints puts the responsibility of soft typol-
ogy in the hands of the grammar rather than the learner, the GMECCS model
assumes a minimal grammar leading the dynamics of the learning algorithm
to be more responsible for the learning results. In this paper, I examine typo-
logical skews that are best explained through the interaction of the grammar
and the learner, rather than prioritizing one of the two components like the
r-volume or GMECCS models. I show that the learnability of patterns in a
MaxEnt model with independently motivated set of constraints makes closer
matches to typological skews than the r-volume of patterns with that set of
constraints, or the learnability of those patterns with a minimal set of con-
straints. The interaction of learner and the grammar interact in ways that are
not apparent from focusing on either one in particular.

The interactive model of learning and grammar allows for types of learning
bias to be predicted that cannot be predicted by the GMECCS model with a
simple symmetrical constraint set. The GMECCS model predicts that learning
biases are favor structurally simple patterns over more complex patterns, but
leaves phonetically natural substantive typological skews to be explained by
external factors.

In the most basic case, this simplicity bias favors patterns that can be
defined based on a single feature over those that require multiple features.

(1) Simplicity Scale:
A restriction based on one feature is simpler than one based on two.
*[+F] is simpler than *[+F,+G] and *[+F]∨[+G]

For example, Pater and Moreton (2012) consider the typology of obstruent
stop inventories. Languages that have three voiceless stops [p], [t], and [k]
may allow all (2), none (3), or a subset of the voiced stops [b d g] (4). The
pattern that bans all voiced stops can be defined using just [+voice], making it
simpler than the pattern that bans only [g], which requires *[+voice, dorsal].
Pater and Moreton (2012) present a typological survey showing that voiced
stops [b] and [g] pattern together across most of the 451 languages in the
UPSID-92 database (Maddieson and Precoda 1992). They find that 54% of
these languages allow both, 34% allow neither, but only 9.5% allow [b] and
ban [g], and 2.7% allow [g] but ban [b]. The patterns that treat [b] and [g]
differently are less common, and also involve more complex restrictions.
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(2) Simple: All stops are available
p t k
b d g

(3) Simple: Voiced stops are banned, *[+voice]
p t k
b d g

(4) Complex: Voiced dorsal stops are banned, *[+voice]&[dorsal]
p t k
b d g

Pater and Moreton (2012) show that this typological skew matches a sim-
plicity bias present in MaxEnt learners.Structural simplicity bias has been
long observed in non-linguistic learning tasks (Shepard et al. 1961; Hunt and
Hovland 1960; Bruner et al. 1956), and have recently been observed in artifi-
cial grammar learning experiments (Moreton and Pater 2012a; Pertsova 2012;
Glewwe 2019) as well.

Typological skews may also be substantive, where the phonological sub-
stance of the features involved in a pattern affects its rate of attestation (Wil-
son 2006). Substantive typological skews are those where patterns defined
based on some feature value, or combination of feature values are more well-
attested typologically than other feature values, even though the patterns are
structurally similar. For example, languages tend to ban voiced stops word fi-
nally more often than they ban voiceless stops word-finally. One pattern bans
the [+voice] feature in word-final stops, whereas the other bans the [-voice]
feature in this position, making these patterns structurally indistinguishable.
Only the phonetic substance, or the identity and values of the features them-
selves, can distinguish these patterns.

Typically, the substantive biases (and asymmetries) focused on in the liter-
ature are those that favor phonetically natural patterns. Phonetically natural
typological skews can often be easily understood as an effect of channel bias
(Moreton 2008), so it is unclear whether they are necessarily the result of
a learning bias. Evidence for substantive bias in artificial grammar learning
experiments has been mixed (see Moreton and Pater 2012b; Glewwe 2019),
though substantive biases have been observed (Wilson 2006; White 2014; Fin-
ley 2012; Kimper 2016; Lin 2016; Martin and Peperkamp 2020). These sub-
stantive biases have also been observed more strongly in natural language
experiments (Hayes and White 2013; Prickett 2018).

However, substantive biases do not need to be based on phonetic natural-
ness. Any learning bias that favors one feature or feature value over another
can be classified as a substantive bias. When phonetically natural patterns are
better attested than structurally similar phonetically unnatural patterns, the
resulting skew in typology may be able to be explained solely as the result of
some channel bias. However, not all typological skews are either structural or
phonetically natural: in some cases two equally simple patterns differ greatly
in attestation, but neither is clearly more phonetically natural than the other.
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While phonetically natural skews in typology may be able to result from chan-
nel biases without being encoded directly in the phonological grammar, it is not
clear that all substantive skews in typology can be easily explained through
channel bias. On the other hand, when MaxEnt learners are supplied with
constraint sets that are not simple and unbiased, those learners may have a
substantive bias towards some patterns over others. This paper investigates
how encoding substantive information, such as markedness hierarchies, in a
set of constraints affects the learnability of phonological patterns, creating
substantive biases that are not clearly based in phonetic naturalness.

Specifically, this paper focuses on the interaction of place of articulation
and syllable position in stop inventories. If both place of articulation and syl-
lable position are treated as features by a learning model, a simplicity bias
would predict that patterns that make restrictions based on only syllable po-
sition or only place of articulation would be more easily learned than patterns
that require an interaction of both of these dimensions, and therefore the sim-
ple patterns would be better attested. Section 2 presents a typological survey
of place and position in stop inventories. This survey is not entirely consistent
with the simplicity hypothesis: languages make restrictions based on syllable
position much more often than they make restrictions based on the interaction
of position and place of articulation, but this effect is not symmetric: languages
are much more likely to make restrictions on position alone than on place of
articulation alone.

Section 3 presents a generational model of MaxEnt learning, also called an
iterated learning model. Learning simulations using an independently moti-
vated set of constraints produce a close match to the typological survey. Typo-
logically underattested patterns are learned slightly slower and less accurately
than common patterns are. Across many generations, the small difference in
learning speed leads these underattested patterns to be learned less stably. In
section 4, two alternative approaches to capturing these typological general-
izations are explored: the GMECCS model, a learning-based model without
substantive bias in the constraints themselves, and the r-volume model, which
attempts to capture typological tendencies through grammatical bias without
learning ((Bane and Riggle 2008; Anttila 1997; Coetzee 2002)). It is demon-
strated that each of these alternatives is missing half of the picture, and cannot
capture the observed typology as well as the substantively biased model.

This paper demonstrates new typological generalizations based on a ty-
pological survey of word-initial vs. word-final stop inventories. Further, these
generalizations are shown to be predicted based on the interaction of the Per-
ceptron learning algorithm and independently motivated sets of constraints.

2 Soft Typology of word initial and word final stop inventories

This section reports the soft typology of place of articulation restrictions of
word-initial and word-final stops. The typological survey presented here shows
two major skews in rates of attestation, summarized in (5). The All-or-Nothing
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Skew can be understood as a purely structural skew in the typology, but the
Positional Priority Skew is inherently substantive. This typology involves two
dimensions: word-position and place of articulation, both have been argued
to involve markedness hierarchies, but languages are far more likely to make
restrictions based on position rather than place. This is a substantive skew be-
cause it is an asymmetry between the substance of the dimensions themselves.

(5) a. All-or-Nothing Skew: Languages that allow [t], [p], and [k] word
initially tend to allow either no places of articulation for stops
word-finally, or all of the places of articulation available for stops
in word-initial position. Languages are relatively unlikely to allow
a proper subset of places of articulation available word-initially in
word-final position

b. Positional Priority Skew: Languages are more likely to make
restrictions based on word-position (i.e. ban all final stops), than to
make restrictions based on place of articulation (i.e. ban all dorsal
stops).

Sections 2.1 and 2.2 will discuss some of the preliminary assumptions and
methodologies used in the typological survey, and section 2.3 will present the
results and demonstrate evidence for the all-or-nothing and positional priority
skews.

2.1 Positional Stop Inventories

The simplicity bias hypothesis can be evaluated by finding the attestation of
patterns that make restrictions using interactions of two different dimensions.
Here I focus on major place of articulation and syllable position, because infor-
mation about these properties is usually easy to find in language grammars,
and they are uncontroversial enough to be reliably observed. Both of these
dimensions are thought to involve cross-linguistic markedness hierarchies, but
we will see that subtle differences exist in how these hierarchies are usually
thought about.

Here I will assume the place of articulation hierarchy as defined by de Lacy
(2006), expressed in (6). de Lacy (2006)’s implementation of this hierarchy
builds on a large body of literature on place of articulation markedness (Kean
1975; Paradis and Prunet 1991; Jun 1995; Lombardi 1998). de Lacy’s major
contribution relevant to this paper is the relationship between labials and dor-
sals. In this hierarchy, coronal segments are less marked than labial segments,
which in turn are less marked than dorsal segments.2

(6) Place of Articulation Markedness Hierarchy
Dorsal ≺ Labial ≺ Coronal

2 ≺ here denotes the relation “is less harmonic (or more marked) than”.
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Evidence for the unmarkedness of coronals comes from a variety of typological
evidence, such as patterns of default epenthesis and outputs of neutralization
processes (see de Lacy (2006) for a review).3 Throughout this paper, I will
assume the existence of the markedness hierarchy proposed by de Lacy (2006),
but it is possible that the observed typological skews could also be modeled
using slightly different hierarchies. The typological survey in this paper is too
small to directly test this hierarchy, however see (REDACTED §2.5) for further
discussion of the evidence of this hierarchy in a larger typological survey.

Turning to the other dimension, languages tend to exhibit more contrasts
in onset position than coda position (Kingston 1985; Itô 1986; Goldsmith
1990). Further, there are strong typological implications with regard to syllable
structure. All languages have CV syllables—V syllables imply CV syllables,
and CVC syllables imply CV syllables—suggesting that onsetful syllables are
less marked than onsetless syllables, whereas codaless syllables are less marked
than codaful syllables (Jakobson and Halle 1956; Blevins 1995).4 Thus, onset
stops can be considered less marked than coda stops.

There are several differences between these two scales worth calling atten-
tion to. First, there appears to be a difference between the relative markedness
of members on these two scales: onsets are less marked than onsetless sylla-
bles, so consonant deletion can sometimes be markedness increasing on the
position dimension. There is no place of articulation that is less marked than
the absence of a consonant, so deletion of a consonant will always result in
markedness reduction on the place of articulation hierarchy. Second, pressures
exist favoring preservation of marked places of articulations over less marked
places, but similar pressures favor preservation of unmarked positions (i.e. on-
sets) over more marked positions. These distinctions are encoded in the set
of constraints assumed for the learning simulations in section 3, and will be
shown to be responsible for the learning bias against simple patterns using only
place of articulation. Another difference between these scales is that there are
more members on the place of articulation scale than the syllable position
scale. This difference will be returned to in section 4.1.

2.2 Typological Survey

To find the positional asymmetries in place of articulation contrasts, a sur-
vey was undertaken examining word-initial and word-final consonant invento-
ries. Many previous typological databases (i.e. WALS (Dryer and Haspelmath
2013), PHOIBLE (Moran and McCloy 2019), etc.) have information on the
syllable structure of a language and have information about the phonemic

3 Though cf. Morley (2015) who argues that consonant epenthesis may be less attested
than de Lacy (2006) argued. Also see Rice (2008), who notes several languages that seem to
show neutralization to labial or dorsal place, and Hume (2003) who argues against universal
markedness hierarchies, and reviews cases of labial unmarkedness.

4 Cf. Breen and Pensalfini (1999) who argue that Arrente has obligatory codas and no
onsets, though see Topintzi and Nevins (2017) for a recent reanalysis of Arrente.
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inventory of a language. However no publicly available database that I was
aware of at the time of writing explicitly examines the interaction of the place
and position inventories—the inventory of consonants relative to different po-
sitions.

Rather than directly investigate onset and coda positions, I investigated
consonant inventories possible in word-initial and word-final positions. While
onset vs. coda position is the most common way of looking at a position
scale, discovering the forms that are legal in onset and coda in a language is
more challenging. Firstly, syllabification is not always apparent in word-medial
positions. Word medial coda consonants must occur in a VCCV context, but
distinguishing VC.CV syllabification from V.CCV can be difficult. If a [pr]
cluster appears intervocalically it is ambiguous from this form (especially a
transcribed rather than phonetic form) whether the cluster is a complex onset
[V.prV] or if the [p] is in coda, [Vp.rV]. Such a determination must be made
based on a larger language-specific picture, based on whether [pr] is a licit
complex onset, whether [VpCV] clusters exist with less sonorous Cs, whether
stress-weight interactions show that the syllable would be heavy, etc. Word-
final consonants are unambiguously in word-final position, and are usually
interpreted as codas.

Secondly, word-medial codas are vulnerable to assimilation processes in
ways that word-final codas are not. For example, if a language has nasal place
assimilation, the surface inventory of nasal stops may be larger in word-medial
positions than word-finally. Word-final segments do not risk this confound in
the same way, because a word-final segment sometimes surfaces before any
possible onset in the language. As a result, the documentation usually reflects
a neutral option rather than all possible forms.

Languages are coded according to what stops are available in word-final
and word-initial position, rather than available in root initial or root final po-
sition, (or any other metric). I chose to focus on word-level restrictions over
restrictions at the morpheme level because word-boundary positions are sub-
ject to similar phonological pressures in most languages, but roots are subject
to a variety of different pressures based on the morphology of the language.
For example, a language where classes of roots never appear without a vowel-
initial suffix or theme vowel may be more likely to have consonant final roots
than languages where roots tend to appear freely without suffixes, or languages
with consonant-initial suffixes. Root-initial or final positions are not as likely
to be linked to onset or coda positions as word-initial and final positions, and
typological surveys of the phonotactics in those positions would require sig-
nificant controlling for morphology, beyond the scope of this current paper.
Further, at least some stages of early acquisition that are modeled by the
learning simulations in this paper occur before children have morphologically
parsed their lexicon fully (Hayes 2004), meaning that learners would not be
aware of the difference.
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2.2.1 Methodology

In this paper, I present the results from a genetically balanced sample based on
the 100-language sample created by the editors of the World Atlas of Language
Structure (WALS, Dryer and Haspelmath 2013). The original WALS sample
is available online.5 The original sample was meant to maximize genealogical
and areal diversity, however the editors note that there are five genera repre-
sented more than once in the sample. Before performing the survey, I randomly
selected one language from each of these overrepresented genera so that the
survey included 94 languages from 94 distinct genera.

For each language in the sample, I attempted to find some documentation
of some variety6 of that language that listed which consonants were available
in word-initial and word-final position.7 I was unable to find sufficient docu-
mentation for seven languages in the WALS sample, however for six of these
languages, I was able to find documentation on a different language in the
same genus, based on the classifications in either WALS or Ethnologue (Lewis
et al. 2013).8 I was unable to find sufficient documentation on Rama (or any
closely related Chibchan languages), so it was excluded from the sample.

In this paper, I will discuss only those languages that have no supralaryn-
geal places of articulation beyond [t], [p], and [k]. There are 48 languages in the
sample that allow no more places of articulation than these three, and 46 that
allow all three. Languages with just three place contrasts overwhelmingly con-
trast coronal, labial, and dorsal sounds. Languages with at least four places of
articulation show significantly more variation. These additional places of artic-
ulation include uvular sounds [q], labiovelar sounds [kp] or [kw], or contrastive
minor coronal places of articulation, etc. I exclude the languages with more
than three supralaryngeal place contrasts here because no particular inventory
of more than three contrasts is well-attested enough to make reliable gener-
alizations about asymmetries between word-initial and word-final position.
Different places of articulation are subject to different phonetic pressures, and
no particular four place inventory pattern is well enough attested to control for

5 Available at https://wals.info/languoid/samples/100 as of August 14, 2019.
6 Different dialects or varieties of a language might have different restrictions on final

consonants. Here, I used the first dialect for which I was able to find sufficient description.
Sampling different dialects or descriptions for each language could result in slightly differ-
ent typological counts, though it is highly unlikely that such resampling would affect the
strong statistical skews noted below. Descriptions of languages may not match an individual
speaker’s grammar, but this type of noise is unlikely to skew the results here either.

7 In some cases, I was unable to find a description that explicitly listed the consonants
available in each position, but I was able to infer positional stop inventories through sets
of minimal pairs. This was done for Alamblak (Edmiston and Edmiston 2003), Arapesh
(Mountain) (SIL 2011a), and Daga (SIL 2011b).

8 The six replacement languages were: Abun instead of Maybrat, Ma’anyan instead of
Malagasy, Humburi Senni instead of Koyraboro Senni, Chontal Mayan instead of Jakaltek,
Oromo (Mecha) [West-Central] instead of Oromo (Harar), and Sierra Popoluca instead of
Zoque (Copainalá).

https://wals.info/languoid/samples/100
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such pressures.9 If the documentation noted a minor place specification, but
it was not contrastive (i.e. all coronal stops are dental in the language), the
sound was classified as coronal labial or dorsal. Sources varied as to what the
symbols 〈c〉 and 〈tS〉 represented. I classified the sounds as stops or affricates
according to how they were described by the documentation.10

The presence or absence of the glottal stop [P] is ignored in the analysis in
this paper because a) glottal stops are more susceptible to specific positional
effects (i.e. being banned from just onset or just coda) and b) the markedness
relationship between glottal stops and [p], [t], and [k] is complex, without a
clear typological implication (de Lacy 2006). As such, a language that allows
[p], [t], [k], and [P] in a position is treated the same as a language that allows
[p], [t], and [k] but not glottal stop in that position in this survey, rather than
being excluded from the survey like a language that allows [p], [t], [k], and [q].

Languages were coded according to their initial and final plain stop inven-
tories.11 If a segment was noted to be restricted to ideophones or loanwords,
the language was treated as if that segment was absent. Further, if a stop
was thought to exist on an abstract underlying level, but never surfaced it
was not included. For example, in Finnish, former word-final /k/ is a ghost
consonant that is apparent in compensatory lengthening, but never surfaces
(Itkonen 1964; Keyser and Kiparsky 1984). For languages that had multiple
series of stops with different laryngeal features, the series with the largest
inventory of licit places of articulations was selected, in order to find the un-
marked laryngeal series, avoiding potential mistranscription of aspiration vs.
voicing contrasts (see Honeybone 2005). However, if a language banned [p] but
allowed [b], it was treated as allowing labials, because such a gap is due to an
interaction between place and voicing (Hayes and Steriade 2004; Flack 2007),
rather than place markedness.

A list of all languages included in this study along with their sources and
stop inventories is available in Appendix A.

9 Languages with more than three contrasting places of articulation for stops still appear
to be largely subject to the all-or-nothing skew, allowing some but not all of the word-initial
stops in word-final position at non-significantly higher rates than languages with only [p t
k] word-finally. See REDACTED §2.4.3 for more details.
10 A language including an affricate [tS] was ignored for the purpose of our study, but con-

taining a palatal stop [c] resulted in the language being excluded from the survey because
it had more than three places of articulation for stops. Thorough investigation of whether
sounds were stops or affricates, or whether palatals were allophonic or phonemic (see contro-
versies around Greek palatals Householder 1964; Arviniti 2007), were beyond the scope of
this survey. Instead I chose to trust the first description of a language I found. As a result,
some languages’ classifications may be disputable. However, debates about the nature of
postalveolar segments and whether sounds are allophonic or phonemic are common, and I
see no reason that the grammars I accessed would be biased to fall more on one side of that
dispute than another.
11 de Lacy (2006) (p. 21) notes that phonotactic generalizations, like those investigated

here, are less clear evidence of actual phonological generalizations than synchronic alterna-
tions. Finding descriptions of synchronic alternations for a large genetically balanced sample
of languages is significantly more difficult, so is beyond the scope of this paper.
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2.3 Results

There are two crucial results from the study. First, in section 2.3.1, I show
that the languages with [p], [t], and [k] word initially exhibit an all-or-nothing
skew in word-final inventories. The simple patterns that can be defined using
only syllable position are better attested than the more complex patterns
that require interactions of position and place. Second, section 2.3.2 presents
evidence that this simplicity bias does not extend symmetrically to the place of
articulation hierarchy. Languages that only ban a place of articulation without
making syllable position specific restrictions are underattested relative to those
languages that ban positions without restricting place of articulation.

2.3.1 All-or-nothing skew in word-final position

Considering languages with [p], [t], and [k] word initially, there are four word-
final inventories that are “harmonically complete” as defined by Prince and
Smolensky (1993/2004); de Lacy (2006). An inventory of word-final stops is
harmonically complete if any particular segment is allowed word-finally, so
must every less marked stop. Table 1 (1-4) presents an example of a language
with each pattern, along with (near) minimal triplets for each position. English
(Table 1 1) allows all three of [p], [t], and [k] word finally, so I call it an All-
Final language. Kiowa (Table 1 2) bans [k] word finally, but allows [p] and [t],
so I call it a [pt]-Final language, because [p] and [t] are licit finally. Finnish
(Table 1 3) allows just [t], so is called a [t]-Final language. Spanish does not
allow any of these three stops word-finally, so is called a No-Final language.
There are also four possible non-harmonically complete inventories: those that
ban one place of articulation word finally, but allow some more marked place
of articulation. For instance, in Lavukaleve (Table 1 5) labial stops, such as
[ph] are banned word finally, but the more marked dorsal stop [kh] is available
word finally, Two of these patterns (the [tk]-Final pattern and the [pk]-Final
pattern) are attested in the survey and are also included in Table 1.

The relative rates of attestation of these patterns are presented in Ta-
ble 2, represented graphically in Figure 1. Languages with [p], [t], and [k]
word-initially overwhelmingly prefer to allow all three places of articulation
word-finally or none of them. The most common patterns are the All-Final and
the No-Final patterns. Because the vast majority of languages in the sample
exhibit either the All-Final or the No-Final pattern, there is not enough statis-
tical power to be confident of any skews amongst the other patterns, whether
if there is a skew favoring patterns with two places of articulation over one, or
favoring the absence of particular places of articulation over others. However,
some trends among these patterns may be observed. In this sample, there are
more languages that allow two stops word-finally than just one. Further, the
place of articulation markedness hierarchy appears to be reflected in attes-
tation rate: the two harmonically complete patterns, the [pt]-Final pattern
and the [t]-Final pattern, are better attested than inventories of the same
size that are non-harmonically complete. It is important to note that patterns
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Table 1: Example languages of each pattern

1. Language with [p], [t], and [k] finally: English (All-Final)
[pAp] pop [tAp] top [kAp] cop
[pAp] pop [pAt] pot [pAk] pock

2. Language with [p] and [t] finally: Kiowa ([pt]-Final) (Watkins 1980)
[pÓ:] ‘eat’ [tó:] ‘tepee’ [ḱı:] ‘meat’
[sép] ‘descend’ [kút] ‘mark’ *[kúk]

3. Language with [t] finally: Finnish ([t]-Final)
[pelAtA] ‘to play’ [telAtA] ‘to paint with a roller’ [kelAtA] ‘to wind’
*[olup] [olut] ‘beer’ *[oluk]

4. Language with no stops word-finally: Spanish (No-Final)
["popa] ‘stern’ ["topa] ‘bump into’ ["kopa] ‘glass’

*[kasap] *[kasat] *[kasak]

5. Language with [t] and [k] word-finally: Lavukaleve ([tk]-Final) (Terrill 1999)
["phara] ‘larrikin’ ["thatha] ‘spider’ ["khariala] ‘easily’

*["kheuph] ["kheuth] ‘skin’ [fa"lukh] ‘cabbage’

6. Language with [p] and [k] word-finally: Lakota ([pk]-Final) (Rood and Taylor 1996)
["phi] ‘liver’ ["thi] ‘to live’ ["khi] ‘to reach home there’

["thob] ‘four’ *["thot] [pa"thag] ‘stopping’

unattested in this sample are not necessarily unattested in any human lan-
guage. However, it would be highly unlikely for the unattested patterns to be
more common than either the All-Final pattern or the No-Final pattern as we
consider more languages of the world. Of the 46 languages considered, 39 lan-

Table 2: Typological Survey: Languages with [p], [t], and [k] word-initially

Word-Final Number Languages
[p t k] 22 Abun, Alamblak, Asmat, Canela-Krahô, Chamorro, Cree

(Plains),
Chontal Mayan, Daga, English, Georgian, Karok, Koasati,
Korean, Kutenai, Lango, Ma’anyan, Meithei, Persian, Sierra
Popoluca, Tagalog, Turkish, Yaqui

[p t] 3 Indonesian, Kiowa, Oromo (Mecha)
[t] 1 Finnish
[∅] 17 Apurinã, Arapesh (Mountain), Barasano, Fijian, Greek

(Modern), Hixkaryana, Japanese, Kewa, Mandarin, Otomı́
(Mezquital), Pirahã, Quechua (Imbabura), Sanuma, Spanish,
Supyire, Tukang Besi, Yagua

[t k] 2 Imonda, Lavukaleve
[p k] 1 Lakota
[p] 0
[k] 0
Total 46

guages, or 84.8%, exhibit either the all-final or no-final patterns. If we assumed
that each of these patterns was equally likely to be observed, we would expect
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Fig. 1: Word-final stop inventory given [p t k] onsets
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only 25% of the languages to exhibit either the all-final or no-final patterns,
because there are six possible subset inventories and only two all-or-nothing
inventories. Even if we assume subset inventories and all-or-nothing invento-
ries are equally likely, languages that allow [p], [t], and [k] word-initially are
significantly more likely to exhibit all-or-nothing inventories than any subset
inventories ( 39

46 , p < .001 by two-sided binomial test). Going further, I tested
whether the presence or absence of each stop finally in the languages of the
sample was correlated with the presence or absence of each other stop. The
presence of [k] in the word-final inventory is not independent from the presence
of [t] word-finally (p < .00112). The same is true for [p] and [t] (p < .001),
and [k] and [p] (p < .001). In other words, a language that lacks one of these
stops word-finally is highly likely to lack the other two as well, and a language
that allows one of the stops word-finally is highly likely to allow the other
two. This sample therefore presents evidence for a structural typological skew:
languages tend to make one-feature restrictions based on final position, rather
than two-feature restrictions based on the interaction of position and place of
articulation.

2.3.2 Positional priority skew

The magnitude of the all-or-nothing skew is similar to other skews observed
in the distribution of place of articulation—Pater (2012) shows that 88% of
the languages in UPSID have both or neither of [b] and [g]. Phonologists have
recognized these type of skews for decades, arguing that languages tend to
maximize feature economy (Martinet 1955; Clements 2003), symmetry (Hock-
ett 1955), or structural complexity (Pater and Moreton 2012; Moreton et al.
2017; Seinhorst 2017). These different approaches differ subtly, but share the
major prediction that languages tend to make restrictions based on one feature,
rather than the interaction of features. The structural complexity approach
directly ties into domain general cognitive biases favoring simple categories,
observed in visual concept learning (Feldman 2006). In this section, I will show
that the No-Finals pattern is equally complex as the Only-[pt] pattern, and

12 All p-values testing pairwise independence of stops are from Fisher’s Exact Test for
Count Data
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show that despite this similarity in complexity, the typology exhibits a posi-
tional priority skew, favoring the No-Finals pattern over the Only-[pt] pattern.

For the purposes of this paper, the structural complexity of a pattern is
based on how many parameters must be attended to in order to separate the
forms into those that are licit and those that are banned.13 For example, the
No-Finals pattern bans [Vp], [Vt], and [Vk], which can be reduced to a ban
on [Final] stops. The place of articulation of the stop in a form is irrelevant
to whether it is banned or not in the No-Finals pattern. On the other hand,
In the [t]-Final pattern, both the place of articulation and the position of the
stop in a form are necessary in order to determine whether or not it would
be banned. The [t]-Final pattern bans [Vp] and [Vk], which at its simplest
bans stops that are [Final] and [Dorsal] or [Final] and [Labial]. The No-Finals
pattern can be assigned a complexity of 1, because it attends to the value on
just one parameter. The [t]-Final pattern receives a complexity of 2, because
both place and position are critical for distinguishing banned and licit forms.

Complexity is successful in predicting the All-or-Nothing skew observed
above, as shown in Figure 2. The All-Final pattern has no restrictions and is
maximally simple. Both the [pt]-Final and [t]-Final patterns require both place
and position, and are significantly underrepresented relative to the No-Final
and All-Final patterns.

Fig. 2: Complexity Example

(a) All-Final
Simple
Complexity= 0
22
46

= 47.8%

pV tV kV
Vp Vt Vk

(b) [pt]-Final
Complex
Complexity= 2
3
46

= 6.5%

pV tV kV
Vp Vt Vk

(c) [t]-Final
Complex
Complexity= 2
1
46

= 2.2%

pV tV kV
Vp Vt Vk

(d) No-Final
Simple
Complexity= 1
17
46

= 40%

pV tV kV
Vp Vt Vk

Structural complexity is blind to the substance of the parameters consid-
ered. A pattern that can be discriminated on the basis of position alone is
equally complex as a pattern that can be discriminated by just place of artic-
ulation. Structural complexity therefore predicts that patterns that make use
of only place of articulation should be similarly well attested as the No-Finals
pattern. As a result, we would expect the Only-[pt] pattern presented in (7),
which bans dorsal stops in all positions, but allows labial and coronal stops in
all positions to be relatively well attested. However, this pattern is quite rare.

(7) Only-[pt]: Simple. Dorsal stops are banned. Complexity=1.
pV tV kV
Vp Vt Vk

13 This metric is a simplification of the algebraic complexity metric proposed by Feldman
(2006). Both metrics perform the same on all of the complexity comparisons discussed here,
but the more precise algebraic complexity metric can make finer-grained distinctions between
patterns not compared here. For more details, see REDACTED.
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Instead of showing that equally simple patterns that ban final stops and ban
dorsal stops are equally frequent, the typological survey shows that languages
are significantly more likely to ban all final stops than all dorsal stops. In
other words, languages are more likely to make restrictions using word-position
rather than place of articulation, which I call the positional priority skew. The
WALS sample discussed above included 93 languages, none of which explic-
itly exhibit the Only-[pt] pattern. The simplicity metric cannot distinguish
the Only-[pt] pattern from the pattern that allow only coronals and dorsals
(Only-[tk]), or the pattern that allows only labials and dorsals (Only-[pk]). Nei-
ther of these patterns are attested in the WALS sample either. In fact, there
are no languages in the WALS sample that clearly allow only two contrast-
ing supralaryngeal places of articulation. If structural complexity was directly
linked to the rate of attestation, we would expect that the Only-[pt] pattern (or
similar patterns) would be attested at a similar rate to the No-Finals pattern.
The difference in attestation between the relatively common No-Finals pattern
(attested 17 times in WALS) and the unattested Only-[pt] pattern is enough
to reject the hypothesis that they are similarly likely based on their similar
complexities, based on the results of a two-sided binomial test ( 17

17 , p < .001).

Two languages in the WALS sample exhibit a pattern similar to the Only-
[tk] pattern. Oneida (Iroquoian: Julian 2010) and Wichita (Caddoan: Rood
1975) lack one of the major places of articulation in both initial and final
positions. Both of these languages lack simple labial stops (i.e. [p] and [b]),
but they both are argued to have a contrast between velar [k] and labiovelar
[kw] stops. Thus, both languages do still have three contrastive supralaryn-
geal places of articulation for stops, [t], [k], and [kw], available word-initially
and word-finally. The presence of the third contrastive stop makes these lan-
guages more similar to the All-Final pattern than the Only-[pt] pattern. Even
if further analysis found that either or both of these languages treat [kw] as a
cluster rather than a segment, there would only be two languages in the WALS
sample that distinguish between licit and banned forms using only place of ar-
ticulation, whereas there are seventeen that use only position. This difference
is still significant by a two-sided binomial test ( 17

19 , p < 0.001).14

Readers may be familiar with other languages not included in the WALS
survey that do not allow one of the three supralaryngeal places of articulations
for stops. Hawaiian, which does not have coronal stops, is perhaps the best
known example. However, Hawaiian and languages like it are not examples
of the Only-[pk] pattern, because stops are not allowed in final position in
Hawaiian. Such languages offer no evidence for or against the positional prior-
ity skew examined here, because the pattern exhibited in them restricts both
place of articulation and position. For more examples of such languages and
further discussion, see REDACTED §2.6.2.

14 In fact, the difference between these categories remains significant with up to seven
languages of the Only-[pt] type.
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2.4 Summary of Results

In summary, two major results arise from the typological survey. First, we ob-
serve the presence of an all-or-nothing skew: there is a typological asymmetry
within the languages with [p], [t], and [k] word-initially to allow all or none of
those stops word-finally, resembling the predictions of a simplicity bias. Sec-
ondly, there is evidence for a positional priority skew: the Only-[pt] pattern,
which allows no dorsals in either word-initial or word-final position, but allows
word-final [t] or [p], is significantly underrepresented relative to the similarly
simple No-Finals pattern. One would expect that the Only-[pt] pattern would
be attested at a similar rate to the No-Finals pattern if there was a bias fa-
voring simple patterns. The following section shows how a bias exists in the
Perceptron with independently motivated constraints that could lead to both
of these typological asymmetries.

3 Learning + Grammar Simulations

In this section I will demonstrate how agent-based generational models of lan-
guage learning can make predictions about soft typology. In this case, I will
show that a model that uses independently motivated constraints based on
the markedness hierarchies on the place of articulation and position hierar-
chies interact with the Perceptron learning algorithm in order to capture two
learning biases: one bias consistent with the All-or-Nothing skew, and one bias
consistent with the Positional Priority skew. The model assumed is exposited
in 3.1. The results of the generational simulations are presented in 3.2, and
shown to capture the typological skews observed in section 2.

3.1 Modeling Learning Bias

The phonological learning problem is difficult. The phonological grammar is
a mapping between underlying forms to surface forms, including which forms
are licit and which ones are not. However, the learner is only directly exposed
to licit surface forms. There is no direct information about illicit forms, and no
direct information as to what the underlying forms are. The immense number
of possible grammars further contributes to the learning challenge. Thus, effi-
cient algorithms for this problem tend to have inherent biases favoring some
grammars over others. Sometimes, these are directly (and intentionally) en-
coded by the designer of the algorithm (see the substantively biased learner
of Wilson 2006). Often there are emergent biases present in the learning algo-
rithm that are less apparent (and less intentional) in the design of the learn-
ing algorithms. Recent work has shown that common learning algorithms for
phonological learning exhibit a variety of emergent biases ranging from favor-
ing systemic simplicity (Pater 2012) to favoring deterministic grammars over
variable grammars (Hughto 2018) to avoiding accidental gaps in the lexicon
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(O’Hara 2017). Most any learning algorithm will have some emergent biases,
and artificial language learning studies have shown some promise to test the
cognitive reality of such biases (see Moreton and Pertsova 2014). Here, I will
focus on the biases present in the commonly used MaxEnt framework with the
Perceptron algorithm, showing that the emergent biases in this learning algo-
rithm match the typological skew present in the typological survey in section
2. This paper uses a Generational Stability Model (GSM)15 which simulates
the stability of different patterns across transmission over many generations,
enhancing small differences in learnability of these patterns.

In the interest of concreteness, I will begin the discussion of learning biases
by introducing the specific grammatical framework and learning algorithm
used in this paper, though many of the principles discussed in this section
hold for a large class of frameworks and learning algorithms.

3.1.1 MaxEnt Harmonic Grammar

The MaxEnt framework is a probabilistic implementation of a constraint-based
grammar like Optimality Theory or Harmonic Grammar, in the sense that it
assigns a probability distribution to the candidates in a tableau based on those
candidates violations of a set of constraints. The probability of each candidate
y for a given input form x, P (y|x), is proportional to the exponential of its
wellformedness (8). Wellformedness is measured via the Harmony score, the
weighted sum of constraint violations the candidate incurs (H(x, y) 9), where
each constraint C is a function from an input-output pair (x, y) to a number
of violations that that candidate incurs on the constraint (here all constraints
will assign a non-positive integer, though this assumption is not necessary.)

(8) Probability of a candidate y given input x in MaxEnt

P (y|x) = eH(x,y)∑
z∈Cand(x)

eH(x,z)

(9) Harmony Score
H(x, y) =

∑
c∈Con

wc ∗ C(x, y)

3.1.2 Perceptron Algorithm

The learning algorithm implemented here is a truncated modification of the
Perceptron algorithm (Rosenblatt 1958; Jäger 2007) proposed by Magri (2015).
This algorithm is error-driven in that the learner is exposed to one form
at a time and attempts to match that form. If it makes an error, the learner
updates its weighting of constraints in order to make the observed form more
likely to be accurately matched when produced in the future.

Specifically, in the simulations in this paper, the learner is attempting to
match the behavior of a teacher agent, which itself has a grammar mapping
each input form to some probability distribution across output forms. At each

15 Also known as an Iterative Learning Model, (Kirby and Huford 2002; Hughto 2018).
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step in the learning procedure, an input form x was sampled uniformly from
the set of possible inputs {/pV/, /tV/, /kV/, /Vp/, /Vt/, /Vk/}, regardless
of what the target grammar is.

Both the learner and the teacher select output forms for the input form x
based on the probability distributions in the learner’s current grammar and
the teacher’s grammar. Here, I denote the learner’s selected form as yL and
the teacher’s form as yT . Then, the learning agent’s constraint weights were
updated proportionally to the difference in violations between the learner’s
form (yL) and the teacher’s form (yT ) as seen in (10). When a constraint is
violated more by the teacher than the learner, the weight of that constraint
is increased, because violations are negative integers. When both teacher and
learner select the same output, the difference in violations on each constraint
is 0, so the weights do not change.

(10) Perceptron Update Rule
η is a learning rate constant between 0 and 1.
wC(t+ 1) = wC(t) + η ∗ (C(x, yL)− C(x, yT ))

There are two sources of stochasticity in this algorithm, the input form
chosen at each iteration of learning is randomly selected, and the output form
each agent selects for that input is randomly selected according to the prob-
ability distribution set by that agent’s MaxEnt grammar. These sources of
randomness prevent the algorithm from being deterministic—any two learners
have seen a slightly different distribution of input forms, and both the teacher
and learner may have chosen different output forms for each input. As the
number of learning iterations increases, it becomes vanishingly unlikely that
any two learners would have identical weights. However, Fischer (2005) shows
that if the learning rate (η) is sufficiently small, this algorithm is (weakly) con-
vergent, meaning that the expected grammar of a learner (the average across
many learners) will approach the target grammar as the number of learning it-
erations increases. However, if learners only receive a finite amount of training
data from their target grammar, they may learn slightly different grammars
than their target grammar.

3.1.3 Agent-Based Model

To model how small learning biases can skew typology, I make use of an agent-
based model of iterated learning to simulate generational transmission follow-
ing (Kirby and Huford 2002; Staubs 2014; Hughto 2018). Across generations,
hard-to-learn patterns end up being more likely to change, and are less likely
to be changed into, resulting in those patterns becoming less well attested
typologically (Bell 1971; Greenberg 1978). In this model, each learner loosely
represents a generation in a language community. A learner is initialized at
the same starting grammar, and then exposed to a set number of randomly
sampled forms from the target grammar of the teacher. After the learner has
seen the set number of forms, it matures, a new learner is initialized, and is
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trained with training data from whatever grammar the newly mature agent
settled on. This method is repeated for a fixed number of generations, after
which I analyzed the grammar learned by the final agent.

As an approximation of a language’s likelihood to change across gener-
ations, I measure the stability of each pattern across many generations. The
stability of a pattern, and what it is likely to change into when it is unstable can
be determined by performing a large number of runs of this generational model
trained off of each pattern. A run qualifies as stable if the pattern learned by
the final generation is the same as the original target pattern. For the purpose
of this paper, each final grammar is binned according to the closest categorical
pattern for several reasons. First, this allows better comparison to the typo-
logical survey, because very few of the grammars surveyed discussed variation,
let alone reported quantitative data to allow me to confidently determine the
observed rates of variation. Second, as noted by Hughto (2018), generational
models show an emergent bias towards categorical patterns as the number of
learning iterations increases. Investigation of simulation results further shows
that if one generation learns a grammar closer to a different categorical pat-
tern than its target pattern, it is very rare for a future generation to reverse
this change, but it is quite common for one generation to become slightly less
categorical and then the next generation to learn a more categorical pattern.
Thus, binning each run based on the closest categorical pattern is the best way
to compare the simulation results to the typological survey. This binning was
performed by selecting the output candidate that has the highest harmony
score for each input. This candidate receives more probability than any of its
competitors. This binning procedure is the same as the Harmonic Grammar
evaluation process. In other words, the closest categorical pattern for a set
of weights is the same pattern that would be selected with those weights in
standard Harmonic Grammar.

3.1.4 The constraints

The last aspect of the model is the structure of the grammar itself. This
includes the set of competing candidates considered by the grammar, and the
set of constraints used. As an abstraction, in the simulations performed here,
each input form had three output candidates, a faithful candidate, a deletion
candidate, and a debuccalization candidate. A larger, perhaps infinite, set of
candidates would drastically increase computation time and make the internal
dynamics of learning less apparent. These three candidates include the major
common repairs for marked stops, for further discussion of other types of
repairs such as epenthesis, see REDACTED §3.3.5.

In order to encode the place of articulation hierarchy, I will make use
of stringently related constraints, following Prince (1999); de Lacy (2002);
Kiparsky (1994). The three markedness constraints I included are included in
(11, based on de Lacy (2002)’s place of articulation markedness constraints.

(11) Constraints encoding the Place of Articulation Hierarchy
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a. *K—Incur a violation for each dorsal segment in the output.

b. *KP—Incur a violation for each dorsal or bilabial segment in the
output.

c. *KPT—Incur a violation for each dorsal, bilabial, or coronal seg-
ment in the output.

The place of articulation hierarchy is crossed with a syllable position hi-
erarchy between onsets and codas. However, as discussed in section 2.1, there
seems to be a difference in the markedness of items on the position hierarchy
compared to the place of articulation hierarchy. While the places of articu-
lation differ in relative markedness, all are marked compared to the absence
of any segment. Deletion even reduces the markedness of coronals. However,
in the syllable position hierarchy, the presence of onsets is preferred to their
absence, motivating the constraint Onset, which marks onsetless syllables.
In the small typology considered here, Onset and NoCoda are somewhat
redundant for purposes of factorial typology: Onset causes segments to be
protected in onset when they would delete in codas, and NoCoda drives co-
das to delete where they do not in onsets. This redundancy is important to
capture the larger factorial typology, and is responsible for the asymmetries
in how learning bias treats the place and positional features.

(12) Constraints along the Syllable Position Hierarchy

a. NoCoda—Assign a violation mark for any syllable that has a
consonant in coda position

b. Onset—Assign a violation mark for any syllable that lacks an
onset consonant.

For the simulations presented here, I will consider two unfaithful candi-
dates for each input, a deletion candidate and a debuccalization candidate. In
the deletion candidate the input stop is deleted (i.e. /Vt/→[V]), and in the de-
buccalization candidate, it is debuccalized to a glottal stop (i.e. /Vt/→[VP]).16

To prevent stops from deleting, I use the faithfulness constraint Max (13).

(13) Max—Assign a violation mark for any segment in the input without
an output correspondent.

Using just deletion, Max and the markedness constraints discussed above,
all of the patterns consistent with the markedness hierarchies can be modeled
in Harmonic Grammar (and even ranked OT). This is because deletion resolves
violations of markedness constraints based on position (like NoCoda) and
place of articulation (like *K).

To pressure against debuccalization, I include a general Ident[place] con-
straint (14). However, debuccalization does not resolve violations of NoCoda.
This means that with only a general faithfulness constraint Ident[place], it

16 While I use [P] here, this debuccalization candidate is meant to represent a large class of
repairs that do not delete the marked consonant, including debuccalization to [h], gemination
with following consonants, or potentially changes in manner.
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is impossible to capture languages where debuccalization occurs only in coda.
Thus, I also include a specific faithfulness constraint, Ident/Onset, which is
a positional faithfulness constraint following Beckman (1998) (15).

(14) Ident[place] —Assign a violation mark for any segment in the input
that has an output correspondent that does not have the same place
of articulation as the input.

(15) Ident/Onset[place]—Assign a violation mark for any segment in
the input that has an output correspondent in the onset of a syllable
that does not have the same place of articulation as the segment in the
input.

I also included specific faithfulness constraints along the place of articu-
lation dimension. Unlike position where marked (or unprivileged) positions
are less faithful than unmarked (or privileged) positions, marked places of ar-
ticulation appear to be more faithful than unmarked places of articulation.
In order to capture asymmetries in place assimilation patterns and to cap-
ture gapped inventories that do not directly follow the markedness hierarchy,
de Lacy (2002, 2006) introduces “marked faithfulness” constraints. Marked
faithfulness constraints protect marked forms from changing and form a fam-
ily of stringency related constraints parallel to those used to encode the place
hierarchy. In effect, this adds two additional specific faithfulness constraints,
IdentK and IdentKP, which are respectively violated when input dorsals
change place of articulation, and when input dorsals or labials change place of
articulation. The third constraint in the family (16b), IdentKPT, is identical
to the general Ident constraint.

(16) Marked Faithfulness constraints for Place of Articulation Scale

a. Ident{X} Assign a violation for a segment on the input that has
a place of articulation within the set X that does not have that
same place of articulation in the output.

b. Ident{K}, Ident{KP}, Ident{kpt}

Together, the constraints reviewed in this section (and repeated in (17)) are
sufficient to generate all the patterns observed in the typological survey in
section 2.

(17) Constraints used:

a. Markedness Constraints: *K, *KP, *KPT, Onset, NoCoda.

b. Faithfulness Constraints: Max, IdentKPT, IdentKP, IdentK,
Ident/Onset

This set of constraints predicts 108 distinct categorical grammars in Har-
monic Grammar according to OT-Help (Staubs et al. 2010). Many of these
grammars differ only in whether unfaithful forms delete or debuccalize. Since
this paper is focused on distributional patterns rather than input-output map-
pings, these 108 grammars can be binned into 27 distinct distributional pat-
terns. Most of these 27 patterns are unattested—some for obvious reasons (a
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Table 3: (Categorical) Patterns Predicted by Factorial Typology. Patterns high-
lighted in gray are simulated in this paper.

Licit Forms
Name pV tV kV Vp Vt Vk Attested? Example

No-Stops 7 7 7 7 7 7 7
[t]-Initial 7 3 7 7 7 7 7

[pt]-Initial 3 3 7 7 7 7 3 Tahitian
No-Final 3 3 3 7 7 7 3 Barasano
[t]-Final 3 3 3 7 3 7 3 Finnish

[pt]-Final 3 3 3 3 3 7 3 Kiowa
All-Final 3 3 3 3 3 3 3 Tagalog
Only-[t] 7 3 7 7 3 7 7

[pt]-Initial+[t]-Final 3 3 7 7 3 7 7
Only-[pt] 3 3 7 3 3 7 7

language with no place contrasts for stops at all is extremely impractical for
communication), but some (like the Only-[pt] pattern discussed in section 2)
are more surprising. Ten of these patterns fully respect the place of articulation
markedness hierarchy, that is, if some place of articulation is banned in a po-
sition, all more marked places of articulation are also banned in that position.
These ten patterns are presented in Table 3. The remaining 17 patterns are
“gapped patterns” where a more marked place is present in a position where
a less marked place is banned, e.g. the pattern where final [p] is banned but
final [k] is preserved (observed in Imonda and Lavukaleve). Further study of
these gapped inventories is beyond the scope of this paper.

For the simulations presented here, I will focus on five patterns. These five
patterns are lightly shaded in Table 3. Patterns that allow all three of [p], [t],
and [k] word initially are named according to their final stop inventory, i.e.
[pt]-Final. Patterns that allow only a subset of [p], [t], and [k], but allow all
initially available stops word-finally are named Only-[x], i.e. Only-[pt]. Pat-
terns that allow only a subset of initial stops are named according to their
initial inventory, i.e. [pt]-Initial. Each of these patterns can be generated given
the constraints discussed above, but the constraints alone say little about the
prevalence of these patterns.17 To see that the all-or-nothing skew discussed
in section 2.3.1 emerges from the generational simulations, I examine the four
hierarchy-respecting patterns that have three places of articulation available
word-initially: All-Final, [pt]-Final, [t]-Final, and No-Final. I will also run sim-
ulations on the Only-[pt] pattern to test the positional priority skew favoring
simple patterns defined using position rather than place of articulation

3.2 Simulation Results

The Generational Stability Model was run using each of the highlighted pat-
terns in Table 3 as categorical target patterns for the first generation. Each

17 Though see the predictions of r-volume approaches in Section 4.2.
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target grammar was used to train a learner for 3600 learning iterations, with
a learning rate of .05, after which that learner’s current grammar was used
to train the next generation for 3600 learning iterations, and so on and so
forth for 25 generations. After 25 generations, the final learner’s grammar was
classified according to the closest categorical pattern, by finding the Harmonic
Grammar winners for each input. One hundred runs of the simulation were
performed with each target grammar to acquire transitional probabilities from
each categorical pattern to the patterns it might change into over time.

In this paper, following a common assumption in the phonological learning
literature, all learners are initialized with the same starting grammar. Each
learner begins with the markedness constraints weighted high (at 50), and
the faithfulness constraints weighted low (at 1). This initial weighting iserves
to promote learning of restrictive patterns, and best simulates intermediate
stages of acquisition (Gnanadesikan 2004; Tesar and Smolensky 2000; Jesney
and Tessier 2011).

The setting of these parameters affect the relative stability of all patterns:
increasing the number of learning iterations per generation makes all patterns
more stable, as does decreasing the number of generations. The relative stabil-
ity between patterns remains the same across a variety of parameter settings.
These parameter settings were chosen relatively arbitrarily with four goals in
mind: learners should (usually) be closer to the categorial target pattern than
any other pattern after the first generation, learning rate is very small relative
to initial markedness constraint weights to ensure weak convergence, simula-
tion time was relatively short (<8 hours), and patterns are not all categorically
stable or unstable.

With markedness constraints initialized high and faithfulness initialized
low, learners start with a near categorical grammar that deletes codas and
debuccalizes onsets. At each new generation, the new learner starts with this
grammar. Learners are initialized with this starting grammar regardless of the
target pattern they are being trained on.

(18) The grammar of an initialized learner
Input /pV/ /tV/ /kV/ /Vp/ /Vt/ /Vk/

Output [PV] [PV] [PV] [V] [V] [V]

The first generation of each run was trained off of a categorical grammar that
exemplified the target pattern. If a form was banned in the target pattern,
the training grammar deleted it if it was in final position, and debuccalized
it if it was in onset position, reflecting the initial state of a learner. This
prevents learners from disagreeing with the target grammar on the unfaithful
mapping. The simulations in this paper abstract away from the learning of
underlying representations by providing the teacher’s intended input form to
the learner at each stage. A more realistic learner would need to induce the
teacher’s intended input through algorithms like lexicon optimization (Tesar
and Smolensky 2000; Inkelas 1995) is beyond the scope of this paper. For
patterns where some forms are not licit, such as the [pt]-Final pattern which
bans final [Vk], the target grammar mapped the illicit form to its deletion
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Fig. 3: Well attested patterns are stable in the simulations, but poorly attested
ones are not.
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candidate if it were a final stop, and its debuccalization candidate for initial
stops. As a result, when the initial teacher produces an unfaithful mapping
it matches the learner’s initial unfaithful mapping, making learners unlikely
to make updates where both teacher and learner select different unfaithful
mappings for the same input. This is to replicate the fact that learners seeing
the teacher produce an unfaithful output form (say /Vk/→[VP]) would be
unable to reconstruct the underlying form /Vk/ without sufficient evidence
from alternations.

The Python code utilized to run these simulations is available at [REDACTED].

3.2.1 Pattern Stability

First I will examine the stability of the patterns in question. A run is classified
as stable if the weights learned by the last grammar would generate the original
target pattern in Harmonic Grammar. Figure 3 shows how the stability of a
pattern is correlated to how well attested that pattern was in the typological
survey. The two patterns that were most common in the typological survey,
No-Final (88% stable) and All-Final (83% stable) were both stable more than
80% of the time. The inventories that require interactions of place and position
([pt]-Final (58% stable) and [t]-Final (0% stable)) were both found to be less
stable, with the more common [pt]-Final pattern being more stable than the
very rare [t]-Final pattern. Further, we can see that even though the Only-
[pt] pattern is as structurally simple as the No-Final pattern, it is far less
stable (27% stable compared to 88% stable). Pairwise comparisons via Fisher’s
Exact Test between each of these rates show significant differences between the
stability of any two patterns (with p < 0.0001) except the All-Final and No-
Final pattern (p = 0.422). Typologically rare patterns are learned significantly
less stably than common patterns.

3.2.2 Likely patterns of change

The stability of a pattern contributes to its attestation, but the flip side of
stability is also important for typology: what do unstable patterns change
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into? In these simulations, the direction of change is very consistent. In these
simulations, change occurs when the learner does not fully reach the target
pattern. With markedness high and faithfulness low, learners start with all
forms being banned. Incomplete learning involves learning only a subset of
the target patterns licit forms.

Table 4 shows the probability of a run with a specific target pattern ending
up with each pattern after 25 generations. No run ever innovates new forms.
Instead, unstable runs lose forms, starting with a licit form that is maximally
marked on some dimension.18 For the All-Final, No-Final, and Only-[pt] pat-
terns, there is a single form that has the most marked place of articulation
licit in the pattern and the most marked position. Unstable runs trained on
the All-Final pattern lose final [Vk], which is the most marked place of artic-
ulation and position available. Unstable runs trained on the No-Final pattern
lose initial [kV], which is the most marked place of articulation and the most
marked position available in the target grammar. Runs trained on Only-[pt]
lose final [Vp].

However, for the [t]-Final and [pt]-Final patterns, there is not a single form
that is maximally marked on each hierarchy. In these cases, position takes pri-
ority over place of articulation. For example, in the [pt]-Final pattern, [Vp] is
more marked than [kV] on the position dimension, but less marked on the place
dimension. They even violate the same number of markedness constraints: [Vp]
violates *KP, *KPT and NoCoda, whereas [kV] violates *KPT, *KP, and *K.
Loss of [kV] would change the [pt]-Final pattern into the simple Only-[pt] pat-
tern, whereas loss of [Vp] changes it into the equally complex [t]-Final pattern.
Yet, unstable runs of the [pt]-Final pattern consistently change first into the
[t]-Final pattern—and then eventually into the No-Final pattern, due to the
extreme instability of the [t]-Final pattern.

This prioritizing of position over place of articulation is consistent with the
underattestation of the Only-[pt] pattern. The [pt]-Final pattern is the only
pattern that could lose one form to turn into the Only-[pt] pattern, but it
consistently changes into the [t]-Final pattern instead. The underattestation
of the Only-[pt] pattern is predicted because it is not only relatively unstable,
but also unlikely to be innovated through change of another pattern, even
though it is a structurally simple pattern.

3.2.3 Generational dynamics reflect how the first generation is learned

These simulations reflect the two major observed typological skews discussed
in Section 2. First, the All-Final and No-Final patterns are stabler than the
two patterns with a subset of final stops ([t]-Final and [pt]-Final), reflecting
the typological skew favoring patterns that were defined only using syllable
position and not place of articulation. Second, the Only-[pt] pattern is not
only unstable, but lacks any paths where other patterns would be mislearned

18 Noticeably, no runs involved a learner changing into a gapped inventory, such as one
where [p] is banned word finally but [k] is not, even though that pattern could be generated
by the set of constraints.
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Table 4: Transitional Probabilities from Generational Simulations with debuc-
calization.
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No-Final .01 .11 .88 0 0 0 0 0
[t]-Final .01 .08 .91 0 0 0 0 0

[pt]-Final 0 0 .23 .19 .58 0 0 0
All-Final 0 0 0 .01 .16 .83 0 0

Only-[pt] .04 .58 0 0 0 0 .11 .27

as one of them. Thus, learners are unlikely to innovate a simple pattern that
uses only place of articulation to define its restriction.

The generational behavior of the simulations can be separated into two
fundamental components: the stability of a pattern, and what that pattern
changes into when it is unstable. Both of these properties are predictable from
the behavior of the average learner in the first generation. When patterns
change, they lose the form that is on average learned last. The more quickly
learners learn the last form of a pattern, the more stable that pattern is.

Figure 4 shows the learning path of the first generation learner training
off of the target pattern, averaged over 100 runs. In learners trained on each
pattern, all licit stops in initial position (colored in red) are learned before any
stops in final position. In each position, stops are learned in order of place of
articulation. This learning order is consistent across runs. To see that these
orders are very unlikely to change across runs, I looked at the /kV/→[kV]
mapping and the /Vt/→[Vt] mapping when trained on the All-Final pattern.
Because the All-Final pattern has more final stops speeding the learning of final
[Vt] than any other pattern under consideration, the expected gap in learning
iterations between when [kV] is learned and [Vt] is learned is the smallest of
the patterns investigated here. Thus, if noise between runs ever subverted the
learning order, we would expect to see it in the All-Final pattern.

I found the number of learning iterations it took for each form to pass the
threshold of .9 probability in the All-Final pattern. There was a significant
difference via pairwise t-test in the number of learning iterations needed to
learn /kV/ (M=1071, SD=47.8) and the number of learning iterations needed
to learn /Vt/ (M=1173, SD=44.6) conditions; t(99) = −13.8, p < .001. Thus,
we can see that learning order is quite consistent across runs. As a result, runs
are highly unlikely to differ in direction of change across generations.

The last form learned by a learner is also the least categorically learned
form. As a result, the last learned form is the first form to be lost across
generations. Because the learning order is so consistent in these simulations,
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Fig. 4: Learning paths for five different patterns (averaged over 100 runs). The
legend of each plot shows the mappings in the order that they are learned.
(Unfaithful mappings that remain at one throughout the learning process are
omitted for ease of reading.)
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(c) [pt]-Final
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(d) All-Final
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it is completely predictable which forms will be lost across generations if the
target pattern is unstable.

How likely a pattern is to be stable is linked to how categorically that
last learned form is learned. In turn, the accuracy of the last learned form is
associated with how many learning iterations it typically takes for that form
to be learned to some degree of certainty. By comparing how many learning
iterations are needed to learn the last learned form of each pattern, it can be
predicted how stable the pattern is relative to other patterns.

Table 5 presents the average number of learning iterations needed to learn
each pattern. For each run, I checked the probability of each form on every
100th learning iteration. I then found the first learning iteration after which the
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Table 5: The average number of learning iterations required to learn all forms
in the target grammar with more than .9 probability.

Pattern No-Final All-Final [pt]-Final Only-[pt] [t]-Final
Mean Iterations Needed 2518 2609 2716 2929 3237

Stand Dev 142 131 133 134 185

Stability % 88 83 58 27 0

learner assigned all forms in the target grammar a probability of at least .9. In
effect, this picks out the point at which the last learned form in each grammar
receives .9 probability. The No-Final pattern is learned fastest, followed by the
All-Final pattern, then the [pt]-Final pattern, the Only-[pt] pattern and the
[t]-Final pattern. Each comparison between patterns is highly significant via
an independent samples t-test (p < .001).

3.3 Discussion

The learning simulations presented in this section show a learning bias favor-
ing patterns that ban all or no final stops (resembling the all-or-nothing skew
observed in the typology), and a bias favoring patterns that ban all places of
articulation in one position (No-Finals) over those patterns that ban one place
of articulation in all positions (Only-[pt]), also replicating the skew observed
in the typology. It is worth noting that with this relatively simple model, all
patterns are expected to change across generations, and change only moves
one way—towards loss of licit stops. This suggests that the process of learn-
ing stop inventories creates a pressure towards loss of sounds, but there are
a number of possible factors not included in this model here that could lead
to acquisition of new sounds across generations. If learners were able to come
into contact with other agents who had lost a form (whether speakers of the
same “language” or not), they could regain stops that had been lost in previ-
ous generations. A further elaborated system could model other phonological
processes such as final vowel deletion which could create evidence for new fi-
nal stops that had been lost. However, adding the possibility of final vowel
deletion to this system is unlikely to hurt the fit of this model—the possibility
of final vowel deletion would cause more patterns to change into the All-Final
pattern, creating a sort of circuit between the highly stable No-Final and All-
Final patterns. This model also has no overt pressure towards patterns that
are communicative—after a high number of generations, the consistent loss of
sounds would result in a completely impractical language. However, this sort of
slippery slope towards a maximally simple language is quite typical in this sort
of generational agent-based learning model that focuses on cross-generation
learning and not communication between agents. Elaborated models that in-
volve interaction between agents during learning appear to show emergent
homophony avoidance and pressures towards expressiveness (see Kirby (2017)
for a general overview, Pater and Moreton (2012) section 2.2 for an example
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from phonology and Hughto (2019) on the differences between interactive and
iterated MaxEnt models of phonology).

It is further worth noting that these learning simulations show that these
skews could be the result of a learning bias, rather than that they must be
the result of a learning bias. Learning bias is not the only factor that could be
responsible for skews in the typology: phonetic factors can favor certain pat-
terns of misperception between speaker and hearer (i.e. channel bias Moreton
2008; Blevins 1993), the patterns of language contact, migration, and death
could cause certain patterns (particularly those found in languages spoken by
major imperialistic forces) to be overrepresented, and other factors. Teasing
apart the typological impact of each of these factors on typology is beyond the
scope of this paper, but will require an understanding of each of the extent
of the capability of each of these biases. This paper intends to show how far
learning bias alone can get us.

4 Alternatives

In order to ensure that the learning bias captured by the interactive learning
and grammar model in the previous section is indeed caused by an interaction
of both the learning algorithm and the structure of the grammar projected
from a set of substantively biased constraints, these results must be compared
to a model that focuses on learning and a model that focuses on grammar. In
this section, the predictions of a model similar to the GMECCS model, which
does not have substantively biased constraints, and thus only uses featural
simplicity (Moreton and Pater 2012b), and the predictions of the r-volume
model, a model that does not use learning, will be considered. The first alter-
native isolates the effect of learning on typology, whereas the second isolates
the effects of the structure of the grammar on typology. The failure of both of
these alternatives shows the importance of the interaction of these factors to
capture the typological skews under investigation. These alternatives further
elucidate the interaction of initial distance and speed to shape typology. The
substance-free model only can distinguish between patterns based on update
speed, and all forms have the same initial markedness difference. On the other
hand, the results of the r-volume approach are inherently correlated to the
initial markedness difference values with the set of constraints considered in
this paper.

4.1 Learning prioritized over grammar: Structural Only

Pater and Moreton (2012) discover a structural bias in MaxEnt learners. If the
learner is given a Con of constraints including general and specific ones, but
lacking any hierarchical structure like the markedness hierarchies used in this
paper, the patterns that are consistent with general constraints are preferred.
Such a model should be able to capture the all-or-nothing skew, because it is a
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Table 6: Stability of Patterns Given Substantively Unbiased Constraints

Initial Final Stability (%)

No-Final pV tV kV 7 7 7 76

[t]-Final pV tV kV 7 Vt 7 52

[pt]-Final pV tV kV Vp Vt 7 35

All-Final pV tV kV Vp Vt Vk 100

Only-[pt] pV tV 7 Vp Vt 7 89

purely structural skew, but will have a harder time capturing the substantive
positional priority skew.

In order to show the predictions of this model, I ran generational stability
simulations as before on the same set of five patterns, but with an unbiased set
of constraints (19).19 These constraints are defined as to create no substantive
bias in the grammar. Therefore, for any constraint NoCoda or *T, there is an
inverse constraint Coda or +T, that reward the behavior the other constraint
marked. There are also no markedness hierarchies encoded in this constraint
set—dorsal, coronal, and labial are simply different labels for three features
that are computationally the same as far as the learner and the grammar
are concerned. 100 runs were performed with each pattern. Learners were
initialized with Max and Ident at zero, but all other constraints at 50. Each
generation was exposed to 2500 forms20, and each run went for 20 generations.

(19) *T, *P, *K, *KT, *KP, *PT, *KPT, +T, +P, +K, +KT, +KP, +PT,
+KPT, Onset, NoOnset, Coda, NoCoda, Max, Ident

The structurally simple patterns are learned more stably because the gen-
eral constraints are more likely to be promoted than specific constraints on any
error, and each time a general constraint is promoted it affects the harmony of
more forms in the grammar than a specific constraint would. With this set of
constraints, the all-or-nothing bias with regard to syllable codas is captured.
Given [p], [t], and [k] in onset, the bias prefers having all or none of those stops
in coda. This makes sense because these patterns are more structurally simple
than the patterns that have a non-empty subset of [p], [t], and [k] in coda.

19 The model explored here differs in some major ways from the GMECCS model used in
Pater and Moreton (2012); Moreton et al. (2017), in order to closer parallel the models used
elsewhere in this paper. First, the GMECCS model uses a phonotactic MaxEnt grammar
that defines the relative probability of all word forms, where this model maps inputs to
outputs, thus no faithfulness would be used in such a model. The GMECCS algorithm also
allows for both negative and positive constraint weights. The combination of these factors
is responsible for the need to have both positive and negative constraints for each form.
20 Because in this model all forms initially have the same harmony score, learners initially

assign equal probability to all possible output forms. This means that the learners start
closer to the target grammar than they do in the simulations from the previous section,
where learners initially produce the least marked candidate for each input near categorically.
As a result, each form can be learned in relatively fewer learning iterations compared to the
model with substantively biased constraints. Thus, fewer learning iterations are used here
for both computational speed and to increase the probability of any mistransmission.
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However, under this model, the simple Only-[pt] pattern is also found to be
stable. Because it is simpler, it is preferred to the pattern that only bans dorsals
in coda [pt]-Final. This is the opposite of the result predicted by the model
with substantively biased constraints presented in the previous section, which
finds the Only-[pt] pattern that bans dorsals in all positions to be maximally
unstable, while the language that only bans final [Vk] is intermediately stable.
The typological data is better matched by the model with substantively biased
constraints than this model with unbiased constraints.

While not shown directly here, this model also has issues capturing im-
plicational relations between places of articulation or syllable positions. Since
there is no substantive bias in the grammar, all places of articulation are in
effect equivalent, and interchangeable, as are onset and coda. A language that
bans all onsets but allows all codas is as stable as a language that bans all
codas. Moreton and Pater (2012b) suggest that the difference in attestedness
between these two patterns could best be explained through another medium,
say channel bias. Future work will explore if there is a way for channel bias to
replace the substantively biased constraints used in section 3.

4.2 Grammar without learning: R-volume

Another alternative makes predictions about the soft typology of a grammar
while focusing only on the space of possible hypotheses, without making as-
sumptions about the direct effects of the learning algorithm on soft typology.

In constraint based grammars, a single phonological pattern can be de-
scribed by multiple discrete rankings of constraints. As a result, certain phono-
logical patterns can be derived from more rankings of constraints than others.
The number of rankings (or weightings) that model a given pattern is propor-
tional to the volume of the total grammatical hypothesis space that results in
such a pattern. Thus, the proportion of rankings that model some pattern is
that pattern’s r-volume. It has long been hypothesized that the relative num-
ber of rankings that results in a particular pattern may be able to explain
some probabilistic aspects of phonology. The relative number of rankings that
result in a one output candidate vs another has been used to model variation
between those candidates in synchronic grammars (Kiparsky 1993; Anttila
1997), and the number of rankings that result in a particular pattern over an-
other has been argue to be responsible for relative rates of attestation in the
soft typology of such patterns (Coetzee 2002; Bane and Riggle 2008). Because
weighted constraint systems have infinite possible grammars, the r-volume can
be approximated by randomly sampling across the possible weights (Bane and
Riggle 2009; Carroll 2010).

Results from this approach have ended up mirroring those observed through
learning based models of soft typology. Bane and Riggle (2008) show that the
r-volume for a given stress pattern is correlated to its typological frequency,
which Staubs (2014) shows emerges from a MaxEnt model similar to the one
structurally-based model used in this paper. Hughto et al. (2014); Hughto and
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Table 7: Predicted attestation rates based on R-volume

Initial Final Percentage

No-Final pV tV kV 7 7 7 14.1

[t]-Final pV tV kV 7 Vt 7 5.1

[pt]-Final pV tV kV Vp Vt 7 2.1

All-Final pV tV kV Vp Vt Vk .4

Only-[pt] pV tV 7 Vp Vt 7 .4

Pater (2017) show that an iterated learning MaxEnt model disprefers patterns
that require gang effects to be modeled, though Bane and Riggle (2009) and
Carroll (2010) note that patterns that require gang effects tend to have rela-
tive small r-volumes. Is it possible that both the stability factors discovered in
the simulations and the cross-typology attestation rates are simply reflecting
the fact that certain patterns have greater r-volumes than others?

To approximate the volume of weightings that model each pattern, 1000
random constraint weight vectors were sampled from a uniform distribution
between 0 and 50, using the runif function in R (R Core Team 2014). In
MaxEnt, the probabilistic nature of the grammar makes it highly unlikely
that any two sets of weights predict the exact same grammar. Like in the other
simulations in this paper, weight vectors were classified based on which form
received the plurality of the probability, matching the Harmonic Grammar
choice function.21 The constraints used were those used in the simulations in
section 3, repeated in (20). Again here, I am including both debuccalization
and deletion as possible repairs for marked structure, but simulations with
just deletion performed similarly.

(20) Constraints Used in R-Volume Calculation
*K, *KP, *KPT, Max, Onset, NoCoda, IdentKPT, Id/Ons,
IdentK, IdentKP

I present the percentage of the r-volume that can be attributed to each of
the five patterns of focus in this paper in Table 7.22From these patterns we
can see that the all-or-nothing skew cannot be explained via r-volume alone
because the All-Final pattern has the smallest r-volume of the five patterns,
lower than the [t]-Final and the [pt]-Final patterns. If r-volume with this set
of constraints modeled the all-or-nothing skew, we would expect the All-Final
pattern to have a larger r-volume than those two patterns, and have a r-
volume more similar to the No-Final pattern. On the other hand, the Only-[pt]

21 Using the Harmonic Grammar choice function, the space of possible constraint weight-
ings is separated into different patterns by planes that pass through the origin, because
if all constraints are weighted at zero, all candidates have the same harmony score. Thus,
regardless of what the upper bound is, the relative volume of each region bounded by these
planes is the same, so the choice of the upper bound on constraint weights does not effect
the relative r-volume of any of these patterns.
22 A full table including the r-volume of each pattern that was sampled in the r-volume

simulations can be found in the appendix B. Most of the remaining r-volume consists of the
patterns that lack all stops word-finally and at least one of the three stops word-initially.
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pattern has a much smaller r-volume than the No-Final pattern. This result
is consistent with the positional priority skew observed in the typology.

One reason the r-volume of the All-Final pattern is so small is because
with this set of constraints, there are far more markedness constraints that
can be satisfied by deletion than faithfulness constraints militating against
deletion. In order to get the All-Final pattern, the constraint weights must
be such that /Vk/ maps to [Vk] more than [V]. This mapping requires that
Max is higher weighted than the sum of NoCoda, *K, *KP, and *KPT. This
condition is only met when Max is weighted quite high, and each of those
constraints are weighted quite low. Imagine the weighting of each constraint
is a die roll. In order for [Vk] to occur, one die needs to roll better than four
dice added together. In order for this to happen, Max must be weighted very
high, and/or all the markedness constraints must be weighted very low.

The positional priority skew is observed in the r-volumes because there
are more ways to capture the No-Final pattern than to capture the Only-[pt]
pattern. Simplifying matters, in the Only-[pt] pattern *K must be particularly
high and active. The other markedness constraints must be relatively low so
that [p] and [t] are produced in onsets and codas, but *K must be high weighted
enough so that (when summed with the weights of *KP and *KPT) it surpasses
faithfulness constraints. On the other hand, there are multiple ways to derive
the No-Finals pattern: it could be caused by NoCoda being weighted high,
Onset being weighted high, or Ident/Onset being weighted high.

One might wonder if it would be possible to modify the constraint set in
order to capture the all-or-nothing skew. The lack of the all-or-nothing skew
was particularly dependent on the fact that there is just one Max constraint.
If we duplicated Max a few times, the r-volume results could change sub-
stantially, without affecting the factorial typology of generable patterns. If we
added more Max constraints, it would be easier for the faithfulness constraints
to outweigh the sum of markedness constraints that militate against final [Vk].
If more constraints were adding together to protect [Vk], [Vk] would surface
more. However, it seems likely that this would only serve to shift the skew in
the r-volume from small inventories to big inventories, rather than being able
to capture the all-or-nothing bias. As we increase the number of constraints
militating against deletion, patterns with a good amount of deletion, such as
No-Final, will become less likely.

With this set of constraints, r-volume fails to capture the all-or-nothing
skew, even though the all-or-nothing skew was emergent in generational sta-
bility simulations using this set of constraints in section 3. This shows that
the learnability of a pattern in this framework is not only determined by its r-
volume, but some interaction of the constraint set and the learning algorithm
determine which patterns are easy or hard to learn. The r-volume may be
partially able to explain the Positional Priority Skew, because the Only-[pt]
pattern has a much smaller r-volume than the equally similar No-Final pat-
tern. However, the Only-[pt] pattern, which was unattested in our typological
sample and relatively hard to learn in the learning simulations in section 3 has
a similar r-volume to the well-attested and easy to learn All-Final pattern.
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Without understanding the interaction of learning and grammar, it is unclear
why the All-Final pattern’s learnability surpasses its r-volume so significantly,
but the Only-[pt] pattern’s does not so much.

4.3 Summary

To summarize, I compare the predictions of each of the models of soft typol-
ogy investigated here and compare them to the real typology. The positional
priority skew observed in the typological data is predicted by the interactive
model in section 3 and by the r-volume of those constraints, but not by the
Structural Bias model, which tests the learnability of patterns with an unbi-
ased set of constraints. On the other hand, the all-or-nothing skew observed
in the typological data is observed in the interactive model and the Structural
Bias model, but not the r-volume model. Further, I tested the correlations
between each of these models and the observed typological counts via linear
regressions. The Interactive model had the closest fit with a R2 of 0.72, but
the other two models fit the typology far worse, with the structural bias model
having an R2 of 0.33, and the r-volume model having an R2 of 0.09. The evi-

Table 8: Comparison of the three models to the typology

Model Positional Priority skew All-or-nothing skew R2

Interactive Model
(§3)

3 3 0.72

Learning: Struc-
tural Bias (§4.1)

7 3 0.33

Grammar:
r-volume (§4.2)

3 7 0.09

Typology (§2) 3 3

dence suggests that more languages of the world favor the position hierarchy
above the place hierarchy—i.e. languages that ban dorsals initially, lack final
stops. This is evidence favoring the Generational Stability Model to the sim-
plicity bias hypothesis. There is evidence that languages that allow all or no
places in coda are preferred to the non-empty proper subsets; this is evidence
favoring the Generational Stability Model to the R-Volume hypothesis.

5 Conclusion

This paper has shown two typological skews present in the soft typology of
positional stop inventories, the all-or-nothing skew and the positional priority
skew. Languages tend to show either all or none of the stops available in word-
initial position in word-final position, and languages tend to make restrictions
with position rather than with place of articulation. The first of these can be
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cast as a structural skew, but the second one is a substantive skew. Both of
these skews were shown to be predicted by learning biases in MaxEnt learners
that were given independently motivated constraints to encode markedness
hierarchies on each of these dimensions, but they were not both predicted by
the r-volume of that same set of constraints, nor by the learning biases in Max-
Ent learners with an unbiased constraint set. This finding suggests that this
skew might be best explained through an integrated model that includes in-
ductive biases based on the learner, the grammar and their interaction, rather
than a model that focuses on deriving inductive biases from either grammar
or learning.

More generally, this finding shows that changes in the set of constraints
given to a MaxEnt learner can greatly impact the relative learnability of dif-
ferent patterns, potentially affecting soft typology. Further, this finding high-
lights how important considering learnability is when attempting to describe
typology with constraint-based grammars. The factorial typology (and the r-
volume) are not sufficient to predict which phonological patterns are likely to
be attested. When a phonologist seeks to add or modify a constraint a theory
of universal Con, they should also consider how different theories of Con may
predict different patterns are more or less learnable. To cast the finding in a
different light, this paper argues that the limitations of a synchronic grammar
can impact the types of diachronic change that occurs (Kiparsky 2008).

This paper also shows a case where two orthogonal sets of substantively-
grounded constraint hierarchies interact to make a substantive learning bias
favoring one feature over another, without encoding that bias directly in the
constraints. This result raises multiple questions. Can the positional priority
skew be cast in a way that is phonetically natural? Is it likely to emerge from
channel biases? Beyond this particular skew however, this paper raises addi-
tional questions regarding substantive biases that are not clearly phonetically
grounded. Here we saw that the interaction of substantively-grounded con-
straints and learning could create new substantive biases. Some approaches
(Pater and Moreton 2012) would argue that the typological skews markedness
hierarchies encoded in the substantively grounded constraints are the result
of channel biases rather than innate constraint hierarchies. Models of chan-
nel bias can be integrated into the types of generational learning models used
here to explain typological skews with less needing to be directly encoded in
the grammar itself. Can the same set of non-phonetically natural substan-
tive biases be captured by the interaction of substantive channel biases as the
interaction of substantively grounded constraints?

A Information about Language Survey
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Table 9: Languages in typological survey

Language Family Genus Source Initial Final

Abun West Papuan North-Central Bird’s Head Berry and Berry (1999) p t k p t k
Alamblak Sepik Sepik Hill Edmiston and Edmiston (2003) p t k p t k
Apurinã Arawakan Purus Facundes (2000) p t k ∅
Arapesh (Mountain) Torricelli Kombio-Arapesh SIL (2011a) p t k ∅
Asmat Trans-New Guinea Asmat-Kamoro Voorhoeve (1965) p t k p t k
Barasano Tucanoan Tucanoan Jones and Jones (1991) p t k ∅
Canela-Krahô Macro-Ge Ge-Kaingang Popjes and Popjes (1986) p t k p t k
Chamorro Austronesian Chamorro Seiden (1960) p t k p t k
Chontal Mayan Mayan Mayan Knowles (1984) p t k P p t k P
Cree (Plains) Algic Algonquian Wolfart (1996) p t k p t k
Daga Dagan Dagan SIL (2011b) p t k p t k
English Indo-European Germanic Personal Judgement p t k p t k
Fijian Austronesian Oceanic Dixon (1988) p t k p t k
Finnish Uralic Finnic Harms (1964) p t k t
Georgian Kartvelian Kartvelian Butskhrikidze (2002) p t k p t k
Greek (Modern) Indo-European Greek Romeo (1964) p t k ∅
Hixkaryana Cariban Cariban Maddieson et al. (2014-2019) p t k ∅
Imonda Border Border Seiler (1985) p t k t k
Indonesian Austronesian Malayo-Sumbawan Lapoliwa (1981) p t k p t
Japanese Japanese Japanese Maddieson et al. (2014-2019) p t k ∅
Karok Karok Karok Bright (1957) p t k p t k
Kewa Trans-New Guinea Engan Franklin (1971) p t k ∅
Kiowa Kiowa-Tanoan Kiowa-Tanoan Watkins (1980) p t k p t
Korean Korean Korean Chang (1996) p t k p t k
Kutenai Kutenai Kutenai Garvin (1948) p t k p t k
Lakota Siouan Core Siouan Rood and Taylor (1996) p t k p k
Lango Eastern Sudanic Nilotic Noonan (1992) p t k p t k
Lavukaleve Solomons East Papuan Lavukaleve Terrill (1999) b t k t k
Ma’anyan Austronesian Barito Gudai (1985) p t k P p t k P
Mandarin Sino-Tibetan Chinese Lin (2001) p t k ∅
Meithei Sino-Tibetan Kuki-Chin Thoudam (1980) p t k p t k
Oneida Iroquoian Northern Iroquoian Julian (2010) t k kw t k kw

Oromo (Mecha) [West-Central] Afro-Asiatic Lowland East Cushitic Tola (1981) p t k p t
Otomı́ (Mezquital) Oto-Manguean Otomian Wallis (1968) p t k ∅
Persian Indo-European Iranian Alamolhoda (2000) p t k p t k
Pirahã Mura Mura Everett (1986) p t k ∅
Quechua (Imbabura) Quechuan Quechuan Cole (1985) p t k ∅
Sanuma Yanomam Yanomam Borgman (1990) p t k ∅
Sierra Popoluca Mixe-Zoque Mixe-Zoque de Jong Boudreault (2009) p t k p t k
Spanish Indo-European Romance Maddieson et al. (2014-2019) p t k ∅
Supyire Niger-Congo Gur Carlson (2011) p t k ∅
Tagalog Austronesian Greater Central Philippine Llamzon (1976) p t k p t k
Tukang Besi Austronesian Celebic Donohue (2011) p t k ∅
Turkish Altaic Turkic Kornfilt (1997) p t k p t k
Wichita Caddoan Caddoan Rood (1975) t k kw t k kw

Yagua Peba-Yaguan Peba-Yaguan Payne (1985) p t k ∅
Yaqui Uto-Aztecan Cahita Dedrick and Casad (1999) p t k p t k

B Estimated r-volumes of each pattern.
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Table 10: Predicted attestation rates based on R-volume

Initial Final Percentage

No-Stops 7 7 7 7 7 7 22.2

[t]-Initial 7 tV 7 7 7 7 28.9

[pt]-Initial pV tV 7 7 7 7 17.2

No-Final pV tV kV 7 7 7 14.1

[t]-Final pV tV kV 7 Vt 7 5.1

[pt]-Final pV tV kV Vp Vt 7 2.1

All-Final pV tV kV Vp Vt Vk .4

Only-[t] 7 tV 7 7 Vt 7 1.6

[pt]-Initial+[t]-Final pV tV 7 7 Vt 7 4.8

Only-[pt] pV tV 7 Vp Vt 7 .4

[p]-Initial 7 pV 7 7 7 7 0.9

[k]-Initial 7 7 kV 7 7 7 0.5

[tk]-Initial tV 7 kV 7 7 7 0.2

[pk]-Initial 7 pV kV 7 7 7 0.6

[p]-Final pV tV kV 7 Vp 7 0.3

[pk]-Final pV tV kV 7 Vp Vk 0.4

[pk]-Initial pV 7 kV 7 7 7 0.6

[pk]-Initial+[p]-Final pV 7 kV 7 Vp 7 0.1

Only-[p] pV 7 7 7 7 Vp 0.1
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