Emergent Gestural Scores in a Recurrent Neural Network Model of Vowel Harmony

Caitlin Smith ${ }^{1}$, Charlie O'Hara², Eric Rosen¹, Paul Smolensky ${ }^{1,3}$
${ }^{1}$ Johns Hopkins University
${ }^{2}$ University of Southern California
${ }^{3}$ Microsoft Research

Modeling Phonology and Phonetics with a Recurrent Neural Network

Recurrent neural networks compute phonological surface forms from underlying forms (Hare 1990; Prickett 2019)

Recurrent neural networks compute articulatory trajectories from strings of segments (Jordan 1986; BiasuttoLervat \& Ouni 2018)

Modeling the Phonology-Phonetics Interface with a Recurrent Neural Network

- Can a recurrent neural network learn to compute articulatory trajectories directly from input phonological segments without being provided any intermediate linguistic structure?
- If so, when tasked with learning a pattern of phonological alternation (e.g. vowel harmony), how does the network represent and generate the pattern?

> GestNet: encoder-decoder network that generates articulatory trajectories from string of phonological input segments

Nzebi Stepwise Height Harmony

(Guthrie 1968, Clements 1991, Parkinson 1996, Kirchner 1996, Smith 2020)
In presence of trigger /-i/, each nonhigh vowel raises one 'step' along a height scale

Non-Raising Context Raising Context Gloss

[betə]	[bit-i]	'carry'
[$3 \underline{\text { ofme] }}$	[$\beta \underline{u} \mathbf{m}$ m-i]	'breathe'
[s¢bə]	[seb-i]	'laugh'
[monə]	[mon-i]	'see'
[salə]	[s¢ $1-i]$	'work'

Modeling the Phonology-Phonetics Interface with a Recurrent Neural Network

Representing Harmony with Gestures

- Articulatory Phonology (Browman \& Goldstein 1986, 1989):
- Dynamically-defined, goal-based units of phonological representation
- Specified for target articulatory state (e.g. labial closure)
- Gestural Harmony Model (Smith 2016, 2018): harmony-triggering gesture extends to overlap gestures of other segments in a word (undergoers)

A Gestural Analysis of Nzebi

(Smith 2020)
Vowel raising harmony due to overlap by upper surface narrowing gesture of suffix high vowel /i/

Resulting tongue body/upper surface aperture (mm):

Modeling the Phonology-Phonetics Interface with a Recurrent Neural Network

Modeling the Phonology-Phonetics Interface in Gestural Phonology

GestNet

GestNet's Encoder-Decoder Architecture

(Cho et al. 2014; Sutskever et al. 2014; Bahdanau et al. 2015; Luong et al. 2015)
Attention (a): provide each decoder hidden state (blue h) with access to all encoder hidden states (red h)

Encoder: process one input vector at each time step

Decoder: produce one output vector at each time step

GestNet's Encoder-Decoder Architecture

(Cho et al. 2014; Sutskever et al. 2014; Bahdanau et al. 2015; Luong et al. 2015)
Attention (a): provide each decoder hidden state (blue h) with access to all encoder hidden states (red h)

Encoder: process one input vector at each time step

Decoder: produce one output vector at each time step

Training the Model

- Height harmony pattern: In VCV in which V_{2} is high vowel /i/ or /u/, V_{1} undergoes one-step raising (i.e. /eb-a/ \rightarrow [eba] but /eb-i/ \rightarrow ibi $]$)
- Trained twenty models for 200 epochs each

Results \& Analysis

Model Accuracy

- All models produced highly accurate lip and tongue body trajectories for VCV sequences after training
- V_{1} produced without raising before non-high vowels
- V_{1} produced with one-step raising before high vowels

Model Accuracy

- All models produced highly accurate lip and tongue body trajectories for VCV sequences after training
- V_{1} produced without raising before non-high vowels
- V_{1} produced with one-step raising before high vowels

> What are our models learning when they learn to produce these patterns?

Examining Encoder-Decoder Attention

- Encoder-decoder attention provides simple recurrent neural networks with short memories a way to look back to encoder hidden states
- Degree of attention paid to an encoder hidden state can be used as measure of how much influence an input segment has on output at specific timepoint

Examining Encoder-Decoder Attention

Proposal: Patterns of encoder-decoder attention reflect patterns of gestural activation in a word's gestural score

- Effective attention: attention weight multiplied by magnitude of its encoder hidden state vector
- At each decoder timepoint, record vector of effective attention weights to determine degree to which how much or how little each encoder hidden state affects the decoder hidden state

Attention Maps: Qualitative Analysis

Lighter color $=$ more attention

- Attention maps show how much the model's decoder attends to each input segment at each time point
- Non-triggering V_{2} : V_{1} and V_{2} each receive attention during their own productions, but not while the other is being produced
- Consistent with sequential gestural activation

Attention Maps: Qualitative Analysis

Lighter color $=$ more attention

- Attention maps show how much the model's decoder attends to each input segment at each time point
- Triggering V_{2} :
- V_{1} receives attention during first half of word
- V_{2} receives attention throughout the entire word
- Consistent with overlapping gestural activation

Attention Maps: Quantitative Analysis

Attention Maps: Quantitative Analysis

Attention on V_{1} Across Syllables

- Mixed effects model confirms these attention patterns are significant
- During production of first syllable (decoder timepoints 2-5), V_{1} input segment receives significantly more attention than during production of second syllable (decoder timepoints 6-9) ($\mathrm{p}<0.001$)
- Gesture of V_{1} is active during first syllable and not active during second syllable

Attention Maps: Quantitative Analysis

Attention Maps: Quantitative Analysis

Attention on V_{2} During First Syllable

- Mixed effects model confirms these attention patterns are significant
- During production of first syllable (timepoints 2-5), harmonytriggering V_{2} input segment receives significantly more attention than non-triggering $\mathrm{V}_{2}(\mathrm{p}<0.001)$
- Gesture of harmony-triggering V_{2} is active during first syllable; gesture of non-triggering V_{2} is not

Conclusion

Conclusion

- GestNet models reliably learn a pattern of stepwise height harmony
- Models develop emergent structure analogous to the abstract representations of gestural phonology
- Patterns of encoder-decoder attention are consistent with patterns of gestural activation assumed in the Gestural Harmony Model
- Next steps: additional model analysis, additional phonological patterns

