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Recurrent neural networks compute 
phonological surface forms from 
underlying forms (Hare 1990; Prickett 
2019)

Recurrent neural networks compute 
articulatory trajectories from strings of 
segments (Jordan 1986; Biasutto-
Lervat & Ouni 2018)

Modeling Phonology and Phonetics with a 
Recurrent Neural Network

Underlying
Form → Phonology → Surface

Form
→ Phonetics → Articulation
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§ Can a recurrent neural network learn to compute articulatory 
trajectories directly from input phonological segments without 
being provided any intermediate linguistic structure?

§ If so, when tasked with learning a pattern of phonological 
alternation (e.g. vowel harmony), how does the network represent 
and generate the pattern?

Modeling the Phonology-Phonetics Interface 
with a Recurrent Neural Network

GestNet: encoder-decoder network that 
generates articulatory trajectories from 
string of phonological input segments
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In presence of trigger /-i/, each nonhigh vowel raises one ‘step’ 
along a height scale

Nzebi Stepwise Height Harmony
(Guthrie 1968, Clements 1991, Parkinson 1996, Kirchner 1996, Smith 2020)

Non-Raising Context Raising Context Gloss

[betə] [bit-i] ‘carry’

[βoːmə] [βuːm-i] 'breathe’

[sɛbə] [seb-i] ‘laugh’

[mɔnə] [mon-i] ‘see’

[salə] [sɛl-i] ‘work’
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Modeling the Phonology-Phonetics Interface 
with a Recurrent Neural Network

Segments

/e  b  i/ 

GestNet
encoder-decoder

recurrent neural network

Proposal:
GestNet develops emergent structure 

analogous to the abstract representations 
of the Gestural Harmony Model 
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§ Articulatory Phonology (Browman & Goldstein 1986, 1989): 
-Dynamically-defined, goal-based units of phonological 

representation
-Specified for target articulatory state (e.g. labial closure)

§ Gestural Harmony Model (Smith 2016, 2018): harmony-triggering 
gesture extends to overlap gestures of other segments in a word 
(undergoers)

Representing Harmony with Gestures

TriggerUndergoer
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Vowel raising harmony due to overlap by upper surface narrowing gesture of 
suffix high vowel /i/

A Gestural Analysis of Nzebi
(Smith 2020)

Tongue Body
upper surface narrow (4mm)

Tongue Body

upper surface

Resulting tongue body/upper surface aperture (mm):
blending

narrow-mid (8mm)
wide-mid (12mm)

wide (16mm)

4
8

12
16

[i], [u]
[e], [o]
[ɛ], [ɔ]
[a]

/e/, /o/ /ɛ/, /ɔ/
/a/
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Modeling the Phonology-Phonetics Interface 
with a Recurrent Neural Network

Segments

/e  b  i/ 

GestNet
encoder-decoder

recurrent neural network
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Modeling the Phonology-Phonetics Interface in 
Gestural Phonology

Segments

/e  b  i/ 
Tongue Body

narrow
Tongue Body
narrow-mid

Gestural Score

Lip
closed
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GestNet
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GestNet’s Encoder-Decoder Architecture
(Cho et al. 2014; Sutskever et al. 2014; Bahdanau et al. 2015; Luong et al. 2015)
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Attention (a): provide each decoder hidden state (blue h) with 
access to all encoder hidden states (red h)

Encoder: process one input vector 
at each time step

Decoder: produce one output vector 
at each time step
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GestNet’s Encoder-Decoder Architecture
(Cho et al. 2014; Sutskever et al. 2014; Bahdanau et al. 2015; Luong et al. 2015)
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Attention (a): provide each decoder hidden state (blue h) with 
access to all encoder hidden states (red h)

Encoder: process one input vector 
at each time step

Decoder: produce one output vector 
at each time step

[a1 a2 a3]
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§ Training data: 112 total (V)CV sequences
- Inputs: symbols strings with C = {b, g} and 

V = {i, e, ɛ, a, ɔ, o, u}
- Outputs: artificially generated trajectories 

for lip and tongue body positions across 
ten timepoints

§ Height harmony pattern: In VCV in which V2 is high vowel /i/ or /u/, V1
undergoes one-step raising (i.e. /eb-a/→[eba] but /eb-i/→[ibi])

§ Trained twenty models for 200 epochs each

Training the Model

Segment Constriction Degree Target
i, u Tongue Body 4
e, o Tongue Body 8
ɛ, ɔ Tongue Body 12
a Tongue Body 16
b Lip -2
g Tongue Body -2
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Results & Analysis
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§ All models produced highly 
accurate lip and tongue body 
trajectories for VCV sequences 
after training

§ V1 produced without raising before 
non-high vowels

§ V1 produced with one-step raising 
before high vowels

Model Accuracy
/eb-a/ → [eba]

[e] [a]

[b]
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§ All models produced highly 
accurate lip and tongue body 
trajectories for VCV sequences 
after training

§ V1 produced without raising before 
non-high vowels

§ V1 produced with one-step raising 
before high vowels

Model Accuracy
/eb-i/ → [ibi]

What are our models learning when 
they learn to produce these patterns?

/e/→[i] [i]

[b]
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§ Encoder-decoder attention provides 
simple recurrent neural networks 
with short memories a way to look 
back to encoder hidden states

§ Degree of attention paid to an 
encoder hidden state can be used 
as measure of how much influence 
an input segment has on output at 
specific timepoint

Examining Encoder-Decoder Attention
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/e b i/
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§ Effective attention: attention weight 
multiplied by magnitude of its 
encoder hidden state vector

§ At each decoder timepoint, record 
vector of effective attention weights 
to determine degree to which how 
much or how little each encoder 
hidden state affects the decoder 
hidden state

Examining Encoder-Decoder Attention

Proposal: Patterns of encoder-decoder 
attention reflect patterns of gestural 
activation in a word’s gestural score

10
5

7
5

4
5

↑ ↑ ↑

h → h → h → h → h → h
↑ ↑ ↑

/e b i/
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§ Attention maps show how much the 
model’s decoder attends to each 
input segment at each time point

§ Non-triggering V2: V1 and V2 each 
receive attention during their own 
productions, but not while the other 
is being produced

§ Consistent with sequential gestural 
activation

Attention Maps: Qualitative Analysis

Lighter color = more attention

[e] [a]

/eb-a/ → [eba]

/e/ /a/
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§ Attention maps show how much the 
model’s decoder attends to each 
input segment at each time point

§ Triggering V2:
- V1 receives attention during first 

half of word
- V2 receives attention throughout 

the entire word

§ Consistent with overlapping 
gestural activation

Attention Maps: Qualitative Analysis

Lighter color = more attention

/eb-i/ → [ibi]/e/→[i] [i]

/eb-i/ → [ibi]

/i//e/
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Attention Maps: Quantitative Analysis

Higher attention on V1 in first syllable

Lower attention on V1 in second syllable



22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Syllable 1 Syllable 2

Ef
fe

ct
iv

e 
At

te
nt

io
n

Attention on V1 Across Syllables § Mixed effects model confirms these 
attention patterns are significant

§ During production of first syllable 
(decoder timepoints 2-5), V1 input 
segment receives significantly more 
attention than during production of 
second syllable (decoder 
timepoints 6-9) (p < 0.001)

§ Gesture of V1 is active during first 
syllable and not active during 
second syllable

Attention Maps: Quantitative Analysis
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Attention Maps: Quantitative Analysis

Heightened attention on harmony-
triggering V2 during first syllable
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Attention on V2 During First Syllable § Mixed effects model confirms these 
attention patterns are significant

§ During production of first syllable 
(timepoints 2-5), harmony-
triggering V2 input segment 
receives significantly more attention 
than non-triggering V2 (p < 0.001)

§ Gesture of harmony-triggering V2 is 
active during first syllable; gesture 
of non-triggering V2 is not

Attention Maps: Quantitative Analysis
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Conclusion
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§ GestNet models reliably learn a pattern of stepwise height 
harmony

§ Models develop emergent structure analogous to the abstract 
representations of gestural phonology

§ Patterns of encoder-decoder attention are consistent with patterns 
of gestural activation assumed in the Gestural Harmony Model

§ Next steps: additional model analysis, additional phonological 
patterns

Conclusion


