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Introduction

Constraint based grammars (Optimality Theory2, Harmonic
Grammar3, etc.) are intended to make strong predictions about
typology.

Factorial Typology: All possible languages are predicted by
some ranking/weighting of a universal set of constraints.

Restricts the search space of possible languages
Only directly captures categorical generalizations

Not all typological generalizations are categorical.

2Prince & Smolensky (1993/2004); McCarthy & Prince (1995)
3(Legendre et al. , 1990; Pater, 2016)

3



Introduction Typology Generational Model Why? References

Introduction

Constraint based grammars (Optimality Theory2, Harmonic
Grammar3, etc.) are intended to make strong predictions about
typology.

Factorial Typology: All possible languages are predicted by
some ranking/weighting of a universal set of constraints.

Restricts the search space of possible languages
Only directly captures categorical generalizations

Not all typological generalizations are categorical.

2Prince & Smolensky (1993/2004); McCarthy & Prince (1995)
3(Legendre et al. , 1990; Pater, 2016)

3



Introduction Typology Generational Model Why? References

Categorical vs. Soft generalizations

Categorical generalization: Some logically possible pattern
is never attested cross-linguistically

Ex: If a language has complex onsets, it allows simple onsets.
Soft generalization: A pattern is relatively more frequently
attested cross-linguistically than another.

Ex: If a language has [b] it usually has [g] as well. 4

4(Pater, 2012)
4
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Learning Bias

Asymmetries in learnability can cause soft typological
generalizations5 6

Hard to learn patterns are more likely to be mislearned; and
therefore change across many generations.

Learning Algorithm + Grammar + ??? → Learning Bias
Learning simulations can uncover biases hard to identify by
analysis alone.

5Greenberg (1978); Staubs (2014); Pater & Moreton (2012)
6Though c.f. R-Volume (Riggle, 2014; Anttila, 1997; Coetzee, 2002) for another way to capture soft typology
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Simplicity Bias

The Perceptron algorithm14 with a MaxEnt grammar predicts
featurally simple patterns are more easily learned—and better
attested15.

Simplicity for our purposes can be defined by number of
features necessary to define a pattern.

Forms in a language usually follow a uniform pattern rather
than be exceptions.
Phonological inventories are usually feature economic. 16

14Rosenblatt (1958); Boersma & Pater (2016)
15Pater & Moreton (2012); Pater (2012); Culbertson et al. (2013)
16(de Groot, 1931; Hockett, 1955; Martinet, 1968; Clements, 2003)
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Simplicity Bias
The Perceptron algorithm14 with a MaxEnt grammar predicts
featurally simple patterns are more easily learned—and better
attested15.

Simplicity for our purposes can be defined by number of
features necessary to define a pattern.

Forms in a language usually follow a uniform pattern rather
than be exceptions.
Phonological inventories are usually feature economic. 16

The pattern that bans all coda stops is simpler than the
pattern that bans just dorsal coda stops.

Coda Coda+dorsal
kV pV tV kV pV tV
Vk Vp Vt Vk Vp Vt

14Rosenblatt (1958); Boersma & Pater (2016)
15Pater & Moreton (2012); Pater (2012); Culbertson et al. (2013)
16(de Groot, 1931; Hockett, 1955; Martinet, 1968; Clements, 2003)
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Interacting Dimensions

The majority of previous work showing simplicity bias are focused
on a simple unidimensional systems.

[Vk] is linked to [Vp].
But how is presence of [Vk] linked to [kV]?

9
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The majority of previous work showing simplicity bias are focused
on a simple unidimensional systems.

[Vk] is linked to [Vp].
But how is presence of [Vk] linked to [kV]?

Coda dorsal
kV pV tV kV pV tV
Vk Vp Vt Vk Vp Vt

Both of these patterns are featurally simple
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Interacting Dimensions

The majority of previous work showing simplicity bias are focused
on a simple unidimensional systems.

[Vk] is linked to [Vp].
But how is presence of [Vk] linked to [kV]?

Coda dorsal
kV pV tV kV pV tV
Vk Vp Vt Vk Vp Vt

Both of these patterns are featurally simple

But only the first pattern is common!
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Claim

Simplicity is not sufficient—Not all soft generalizations in the
observed typology are simplicity based.
Learning Bias can do more—Simplicity is not the only factor
that can make a pattern easy to learn

Common and Easy to Learn patterns are Simple and
Markedness Consistent

10
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Markedness Hierarchies

Two markedness hierarchies—defined by well-studied typological
implications thought to be categorical (and therefore encoded in
the grammar.)

Onset vs. coda 17

CV � VC
Place of articulation18
Coronal � Labial � Dorsal

17(Jakobson & Halle, 1956; Kingston, 1985; Goldsmith, 1990)
18(de Lacy, 2006; Kean, 1975; Lombardi, 2001)

12
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Typological Survey

Development of the Word Edge Consonant Database (WECD)
173 Languages
Languages with no consonants (of any sort) in word-final
position were not included.
Focus on 73 languages with just [k p t] initially.19

19that allow maximally three supralaryngeal places of articulation for stops
13
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Results of Typological Survey

Four word-final inventories are available for languages with all of
[k p t] word initially.

Onset Coda
No Codas tV pV Vk 7 7 7 31
T-Coda tV pV Vk Vt 7 7 1
PT-Coda tV pV Vk Vt Vp 7 6
All-Codas tV pV Vk Vt Vp Vk 35

14
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No Coda Pattern

Onset Coda
No Codas tV pV kV 7 7 7 31
T-Coda tV pV kV Vt 7 7 1
PT-Coda tV pV kV Vt Vp 7 6
All-Codas tV pV kV Vt Vp Vk 35

Example: Italian
["tasto] button ["pasto] meal ["kasto] chaste

*[kasat] *[kasap] *[kasak]

15
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Only T-Coda Pattern

Onset Coda
No Codas tV pV kV 7 7 7 31
T-Coda tV pV kV Vt 7 7 1
PT-Coda tV pV kV Vt Vp 7 6
All-Codas tV pV kV Vt Vp Vk 35

Example: Finnish
[telata] to paint [pelata] to play [kelata] to wind
[keot] anthills *[keop] *[keok]

16
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PT-Coda Pattern

Onset Coda
No Codas tV pV kV 7 7 7 31
T-Coda tV pV kV Vt 7 7 1
PT-Coda tV pV kV Vt Vp 7 6
All-Codas tV pV kV Vt Vp Vk 35

Example: Movima (Haude, 2006)

["tanna] I cut [pEnna] my landing place [kanan] your food
[tSu:"hat] palm tree [ku:"âup] flea *[ku:"âuk]

17
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All-Codas Pattern

Onset Coda
No Codas tV pV kV 7 7 7 31
T-Coda tV pV kV Vt 7 7 1
PT-Coda tV pV kV Vt Vp 7 6
All-Codas tV pV kV Vt Vp Vk 35

Example: English
[tap] top [pap] pop [kap] cop
[pat] pot [pap] pop [pak] pock

18
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Soft Generalizations

There is a soft generalization favoring the patterns with either all
or none of the codas.

Onset Coda
No Codas tV pV kV 7 7 7 31
T-Coda tV pV kV Vt 7 7 1
PT-Coda tV pV kV Vt Vp 7 6
All-Codas tV pV kV Vt Vp Vk 35

[Vt] usually implies [Vp] (4142)
[Vp] typically implies [Vk] (3541)

Simplicity bias predicts these generalizations.
Coda Coda+Dorsal Coda+Dor,Lab

kV pV tV kV pV tV kV pV tV
Vk Vp Vt Vk Vp Vt Vk Vp Vt

19



Introduction Typology Generational Model Why? References

Simplicity on the other dimension

Simplicity also predicts that the pattern with no dorsals will be well
attested.

Dorsal
kV pV tV
Vk Vp Vt

No languages that lack dorsal stops allow coda stops

20



Introduction Typology Generational Model Why? References

Simplicity on the other dimension

Simplicity also predicts that the pattern with no dorsals will be well
attested.

Dorsal
kV pV tV
Vk Vp Vt

No languages that lack dorsal stops allow coda stops
Language Family Initial Final
Xavante Macro-Ge p t P ∅ (Estevam, 2011)
Tahitian Austronesian p t P ∅ (Tryon, 1970)
Wutung Skou p t P ∅ (Marmion, 2010)
Vanimo Skou p t P ∅ (Clifton, 1995)
Nouri Skou p t ∅ (Donohue, 2010)

Typological Generalization: [Vt] implies [kV]

20
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Results of Typological Survey

Soft Generalizations:
[Vt] usually implies [Vp]
[Vp] typically implies [Vk]

Categorical Generalization:
[Vt] implies [kV]

21
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Stability Model
To model how learnability would shape soft typology, the stability
of each pattern across many generations is tested.20

Patterns are rarely perfectly transmitted from teacher to
learner
Some patterns are more resilient to small errors—whereas
others fall apart quickly across generations.

Generational stability is modeled by iterating a learning model.21

First generation is trained from categorical data from the
pattern in question.
Data is cut off after a limited number (3200) of forms.
The learner then produces forms from the grammar they have
learned to train the next learner.
And so on for 20 generations.

20c.f. Hughto (2018): stability 6= interactive model i.e. Pater (2012); Hughto & Pater (2017)
21(Staubs, 2014; Dowman et al. , 2006)
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Learning Model

Each learner uses a MaxEnt grammar.22
Constraints Used:

Place of Articulation scale: *k, *kp, *kpt
Onset vs. coda: Onset, NoCoda
Faithfulness: Max

Initial State23
Markedness Constraints at 50
Faithfulness (Max) at 1

22(Goldwater & Johnson, 2003)
23(As in Jesney & Tessier 2011)
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This graph represents the initial state of a learner in these learning
simulations.

Positive values on the y-axis represent forms where the
consonant deletes more than it surfaces.
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Update Rule
Error-Driven Perceptron Algorithm (Rosenblatt, 1958; Boersma &
Pater, 2016)

On each iteration, teacher selects an input at random, and
produces an output.
The learner produces an output as well.
If the learner and teacher differ, raise the weights on the
constraints the learner violated, and lower the weights on the
constraints the teacher violated.

Example
Teacher: /tV/-[tV]
Learner: /tV/-[V]

50 50 50 50 50 1
tV *k *kp *kpt Onset NoCoda Max Harm Prob
(T) a. tV -1 -50 .73
(L) b. V -1 -1 -51 .27

26
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Update Rule
Error-Driven Perceptron Algorithm (Rosenblatt, 1958; Boersma &
Pater, 2016)

On each iteration, teacher selects an input at random, and
produces an output.
The learner produces an output as well.
If the learner and teacher differ, raise the weights on the
constraints the learner violated, and lower the weights on the
constraints the teacher violated.

Example
Teacher: /tV/-[tV]
Learner: /tV/-[V]

50 50 50↓ 50↑ 50 1↑
tV *k *kp *kpt Onset NoCoda Max Harm Prob
(T) a. tV -1↓ -50↑ .73
(L) b. V -1↑ -1↑ -51↓ .27
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Update Rule
Error-Driven Perceptron Algorithm (Rosenblatt, 1958; Boersma &
Pater, 2016)

On each iteration, teacher selects an input at random, and
produces an output.
The learner produces an output as well.
If the learner and teacher differ, raise the weights on the
constraints the learner violated, and lower the weights on the
constraints the teacher violated.

Example
Teacher: /tV/-[tV]
Learner: /tV/-[V]

50 50 49↓ 51↑ 50 2↑
tV *k *kp *kpt Onset NoCoda Max Harm Prob
(T) a. tV -1↓ -49↑ .98
(L) b. V -1↑ -1↑ -53↓ .02

26
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Generational Stability Results

Stability Rates formulated by running simulation 50 times using
Soft Typology Tool (O’Hara, 2017)24 for each pattern.

A run is considered to be stable if:
max(G20(x))=G0(x)

24http://dornsife.usc.edu/ohara/stt/
27
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Generational Stability Results

Stability Rates formulated by running simulation 50 times using
Soft Typology Tool (O’Hara, 2017)24 for each pattern.

A run is considered to be stable if:
max(G20(x))=G0(x)

Pattern Stability (%)
All Codas 84%
PT-Codas 48%
T-Codas 0%
No Codas 92%
No Dorsals 0%

24http://dornsife.usc.edu/ohara/stt/
27
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Simulations capture observed soft generalizations

Soft Generalizations:
3 [Vt] usually implies [Vp]
3 [Vp] typically implies [Vk]

Categorical Generalization:
3 [Vt] implies [kV]

Pattern Stability (%)/Observed (lgs)

All Codas 84%
35 lgs

PT-Codas 48%
6 lgs

T-Codas 0%
1 lg

No Codas 92%
31 lgs

No Dorsals 0%
0 lgs 28
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Simulation Details

Most patterns decayed—marked forms were lost over time.
T-Coda runs quickly lost [Vt].
Unstable PT-Coda runs lost [Vp] eventually, and then quickly
lost [Vt].

Not the case for the No Dorsals runs.
In this case [kV] was learned accidentally while trying to learn
[Vp]

All patterns moved towards No-Codas.

29
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Why is No-Dorsals so unstable?

Why is [kV] learned when training on the No-Dorsals pattern?

[kV] is initially less marked
than [Vp].
Max has less far to move to
make [kV] licit in the
language, than [Vp].
Even though [Vp] moves
faster,

30
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Why is No-Dorsals so unstable?

Why is [kV] learned when training on the No-Dorsals pattern?

[kV] is initially less marked
than [Vp].
Max has less far to move to
make [kV] licit in the
language, than [Vp].
Even though [Vp] moves
faster, it doesn’t catch up in
time.

30
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Markedness Consistency

Learning Bias towards Markedness Consistent patterns.
Markedness Consistent- A pattern P is markedness
consistent iff for x , y ; x is dispreferred by more net markedness
constraints than y is, and x is part of a pattern, y is as well.

i.e. The most marked form allowed is not more marked than
the least marked banned form.

Learners prefer the patterns that are both simple and
markedness consistent.

31
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Common patterns are both simple and markedness consistent.
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Conclusion

Simplicity is not sufficient—Simplicity alone cannot explain the
generalization against the No Dorsals pattern.
Learning Bias can do more—The No Dorsals pattern is less
stable than the more common patterns, due to interactions of the
learning algorithm and the grammar, which cannot be collapsed
into simplicity.

Common and Easy to Learn patterns are Simple and
Markedness Consistent

34
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Implications

With hard coded markedness constraints (a substantive bias),
the typology can be captured.
Can a bias like this Markedness Consistency bias arise if
substantive bias is not present in the phonological grammar,
but is due to channel bias?

Stay tuned, but looks like no

How does stability extend to other domains?
Soft Typ Tool (O’Hara, 2017).

35
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Not Just No Dorsals

No language with less than three (supralaryngeal) stops
word-initially, have any word-finally.

Language Family Initial Final
Xavante Macro-Ge p t P ∅ (McLeod &

Mitchell, 2003;
Estevam, 2011)

Tahitian Austronesian p t P ∅ (Tryon, 1970)
Wutung Skou p t P ∅ (Marmion, 2010)
Vanimo Skou p t P ∅ (Clifton, 1995)
Nouri Skou p t ∅ (Donohue, 2010)
Hawaiian Austronesian k p P ∅ (Elbert & Pukui,

1979)
Yellowknife
Chipewyan

Na-Dene k p P ∅ (Li, 1946; de Lacy,
2006)

Colloquial Samoan Austronesian k p P ∅ (Clark, 1976)
Ayutla Mixtec Oto-Manguean k t P P (Pankratz & Pike,

1967)
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What happens if you get rid of Onset

Why is [Vp] initially more marked than [kV]
Onset and NoCoda are separate constraints making the
same distinction in this domain.
By removing one of these constraints, a different picture
arises.
Without Onset, the No-Codas pattern becomes unstable,
and the No-Dorsals pattern becomes the attractor.

No Codas loses [kV], while gaining [Vt].
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R-Volume Results
R-volume25 has been used to model typological frequency.

Calculated by sampling weights from uniform distribution 0-20
Fails here to get the simplicity all-or-nothing bias.

Onset Coda Percentage
Zero 7 7 7 7 7 7 15.9
T tV 7 7 7 7 7 30.8
Tt tV 7 7 Vt 7 7 3.6
TP tV pV 7 7 7 7 22.9
TPt tV pV 7 Vt 7 7 3.8

No Dorsals tV pV 7 Vt Vp 7 1.5
No Codas tV pV kV 7 7 7 12.3
T-Codas tV pV kV Vt 7 7 5.6
PT-Codas tV pV kV Vt Vp 7 2.8
All Codas tV pV kV Vt Vp Vk .8

25(Anttila, 1997; Coetzee, 2002; Riggle, 2014)
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