

Learnability captures soft typology of coda stop inventories

Charlie O'Hara University of Southern California

Salt Lake City, LSA 2018 January 6, 2018

Constraint based grammars (Optimality Theory², Harmonic Grammar³, etc.) are intended to make strong predictions about typology.

- Factorial Typology: All possible languages are predicted by some ranking/weighting of a universal set of constraints.
 - Restricts the search space of possible languages
- Only directly captures categorical generalizations

Not all typological generalizations are categorical.

²Prince & Smolensky (1993/2004); McCarthy & Prince (1995)

³(Legendre *et al.* , 1990; Pater, 2016)

Constraint based grammars (Optimality Theory², Harmonic Grammar³, etc.) are intended to make strong predictions about typology.

- Factorial Typology: All possible languages are predicted by some ranking/weighting of a universal set of constraints.
 - Restricts the search space of possible languages
- Only directly captures **categorical** generalizations

Not all typological generalizations are categorical.

²Prince & Smolensky (1993/2004); McCarthy & Prince (1995)

³(Legendre *et al.* , 1990; Pater, 2016)

Categorical vs. Soft generalizations

- **Categorical generalization**: Some logically possible pattern is never attested cross-linguistically
 - Ex: If a language has complex onsets, it allows simple onsets.
- **Soft generalization**: A pattern is relatively more frequently attested cross-linguistically than another.
 - Ex: If a language has [b] it usually has [g] as well. ⁴

Asymmetries in learnability can cause soft typological generalizations⁵ ⁶

- Hard to learn patterns are more likely to be mislearned; and therefore change across many generations.
- Learning Algorithm + Grammar + ??? \rightarrow Learning Bias
- Learning simulations can uncover biases hard to identify by analysis alone.

⁵Greenberg (1978); Staubs (2014); Pater & Moreton (2012)

⁶Though c.f. R-Volume (Riggle, 2014; Anttila, 1997; Coetzee, 2002) for another way to capture soft typology

Asymmetries in learnability can cause soft typological generalizations 5 6

• Hard to learn patterns are more likely to be mislearned; and therefore change across many generations.

What makes a pattern hard to learn?

- Learning Algorithm + Grammar + ??? \rightarrow Learning Bias
- Learning simulations can uncover biases hard to identify by analysis alone.

⁵Greenberg (1978); Staubs (2014); Pater & Moreton (2012)

⁶Though c.f. R-Volume (Riggle, 2014; Anttila, 1997; Coetzee, 2002) for another way to capture soft typology

Asymmetries in learnability can cause soft typological generalizations $^{5\ 6}$

• Hard to learn patterns are more likely to be mislearned; and therefore change across many generations.

What makes a pattern hard to learn?

- Learning Algorithm + Grammar + ??? \rightarrow Learning Bias
- Learning simulations can uncover biases hard to identify by analysis alone.

⁵Greenberg (1978); Staubs (2014); Pater & Moreton (2012)

⁶Though c.f. R-Volume (Riggle, 2014; Anttila, 1997; Coetzee, 2002) for another way to capture soft typology

Asymmetries in learnability can cause soft typological generalizations 5 6

• Hard to learn patterns are more likely to be mislearned; and therefore change across many generations.

What makes a pattern hard to learn?

- Learning Algorithm + Grammar + ??? \rightarrow Learning Bias
- Learning simulations can uncover biases hard to identify by analysis alone.

⁵Greenberg (1978); Staubs (2014); Pater & Moreton (2012)

⁶Though c.f. R-Volume (Riggle, 2014; Anttila, 1997; Coetzee, 2002) for another way to capture soft typology

The Perceptron algorithm¹⁴ with a MaxEnt grammar predicts featurally simple patterns are more easily learned—and better attested¹⁵.

- Simplicity for our purposes can be defined by number of features necessary to define a pattern.
 - Forms in a language *usually* follow a uniform pattern rather than be exceptions.
 - Phonological inventories are usually feature economic. ¹⁶

¹⁴Rosenblatt (1958); Boersma & Pater (2016)

¹⁵Pater & Moreton (2012); Pater (2012); Culbertson *et al.* (2013)

¹⁶(de Groot, 1931; Hockett, 1955; Martinet, 1968; Clements, 2003)

Simplicity Bias

The Perceptron algorithm¹⁴ with a MaxEnt grammar predicts featurally simple patterns are more easily learned—and better attested¹⁵.

- Simplicity for our purposes can be defined by number of features necessary to define a pattern.
 - Forms in a language *usually* follow a uniform pattern rather than be exceptions.
 - Phonological inventories are usually feature economic. ¹⁶
- The pattern that bans all **coda** stops is simpler than the pattern that bans just dorsal **coda** stops.

•	Coda		5	Coc	la+ <mark>d</mark> c	orsal
kV	рV	tV		kV	рV	tV
₩	₩p	¥ŧ		₩k	Vp	Vt

¹⁴Rosenblatt (1958); Boersma & Pater (2016)

¹⁵Pater & Moreton (2012); Pater (2012); Culbertson et al. (2013)

¹⁶(de Groot, 1931; Hockett, 1955; Martinet, 1968; Clements, 2003)

Interacting Dimensions

The majority of previous work showing simplicity bias are focused on a simple unidimensional systems.

- [Vk] is linked to [Vp].
- But how is presence of [Vk] linked to [kV]?

Interacting Dimensions

The majority of previous work showing simplicity bias are focused on a simple unidimensional systems.

• [Vk] is linked to [Vp].

But how is presence of [Vk] linked to [kV]?
 Coda dorsal
 kV pV tV
 Vk Vp Vt
 Vk Vp Vt

• Both of these patterns are featurally simple

Interacting Dimensions

The majority of previous work showing simplicity bias are focused on a simple unidimensional systems.

• [Vk] is linked to [Vp].

•	But h	ow is	prese	nce of	[[V k]	linke	d to	[kV]?
		Coda				dorsal		
	kV	рV	tV		₩	рV	tV	
	₩	V₽	¥ŧ		₩	Vp	Vt	

Both of these patterns are featurally simple

But only the first pattern is common!

Introduction

Typology

Claim

Simplicity is not sufficient—Not all soft generalizations in the observed typology are simplicity based. **Learning Bias can do more**—Simplicity is not the only factor that can make a pattern easy to learn

• Common and Easy to Learn patterns are Simple and Markedness Consistent

Markedness Hierarchies

Two markedness hierarchies—defined by well-studied typological implications thought to be categorical (and therefore encoded in the grammar.)

- Onset vs. coda ¹⁷ $CV \succ VC$
- Place of articulation¹⁸
 Coronal ≻ Labial ≻ Dorsal

¹⁷⁽Jakobson & Halle, 1956; Kingston, 1985; Goldsmith, 1990)

¹⁸(de Lacy, 2006; Kean, 1975; Lombardi, 2001)

Typological Survey

Development of the Word Edge Consonant Database (WECD)

- 173 Languages
- Languages with no consonants (of any sort) in word-final position were not included.
- Focus on 73 languages with just [k p t] initially.¹⁹

¹⁹that allow maximally three supralaryngeal places of articulation for stops

Results of Typological Survey

Four word-final inventories are available for languages with all of [k p t] word initially.

		Onset		l	Coda			
No Codas	tV	рV	Vk	X	×	X	31	
T-Coda	tV	рV	Vk	Vt	×	X	1	
PT-Coda	tV	рV	Vk	Vt	Vp	X	6	
All-Codas	tV	рV	Vk	Vt	Vp	Vk	35	

No Coda Pattern

		Onset			Coda			
No Codas	tV	рV	kV	X	X	X	31	
T-Coda	tV	рV	kV	Vt	X	X	1	
PT-Coda	tV	рV	kV	Vt	Vp	X	6	
All-Codas	tV	рV	kV	Vt	Vp	Vk	35	

• Example: Italian

['tasto] button ['pasto] meal ['kasto] chaste *[kasat] *[kasap] *[kasak]

Only T-Coda Pattern

		Onset		I	Coda				
No Codas	tV	рV	kV	X	×	X	31		
T-Coda	tV	рV	kV	Vt	×	X	1	1	
PT-Coda	tV	рV	kV	Vt	Vp	X	6		
All-Codas	tV	рV	kV	Vt	Vp	Vk	35		

• Example: Finnish

[telata] to paint [pelata] to play [kelata] to wind [keot] anthills *[keop] *[keok]

PT-Coda Pattern

		Onset			Coda			
No Codas	tV	рV	kV	X	×	X	31	
T-Coda	tV	рV	kV	Vt	×	X	1	
PT-Coda	tV	рV	kV	Vt	Vp	X	6	
All-Codas	tV	рV	kV	Vt	Vp	Vk	35	

• Example: Movima (Haude, 2006)

['tanna] / cut [pɛnna] my landing place [kanan] your food [tʃuː'hat] palm tree [kuː'dup] flea *[kuː'duk]

All-Codas Pattern

		Onset		I	Coda			
No Codas	tV	рV	kV	X	X	X	31	
T-Coda	tV	рV	kV	Vt	X	X	1	
PT-Coda	tV	рV	kV	Vt	Vp	X	6	
All-Codas	tV	рV	kV	Vt	Vp	Vk	35	

- Example: English

Soft Generalizations

There is a soft generalization favoring the patterns with either all or none of the codas.

		Onset			Coda			
No Codas	tV	рV	kV	X	×	X	31	
T-Coda	tV	рV	kV	Vt	×	X	1	
PT-Coda	tV	рV	kV	Vt	Vp	X	6	
All-Codas	tV	рV	kV	Vt	Vp	Vk	35	

- [Vt] *usually* implies [Vp] $\left(\frac{41}{42}\right)$
- [Vp] *typically* implies [Vk] $\left(\frac{35}{41}\right)$

Simplicity bias predicts these generalizations.

Coda		Cod	a+Do	orsal	Coda+Dor,Lab				
kV	рV	tV		kV	рV	tV	kV	рV	tV
₩k	V₽	¥ŧ		₩k	Vp	Vt	₩	¥₽	Vt

Simplicity on the other dimension

Simplicity also predicts that the pattern with no dorsals will be well attested.

- Dorsal
- ₩ pV tV
- <mark>Vk Vp</mark> Vt

• No languages that lack dorsal stops allow coda stops

Simplicity on the other dimension

Simplicity also predicts that the pattern with no dorsals will be well attested.

Dorsal

 k₩
 pV
 tV

 ₩k
 Vp
 Vt

• No languages that lack dorsal stops allow coda stops

Language	Family	Initial	Final	
Xavante	Macro-Ge	pt?	Ø	(Estevam, 2011)
Tahitian	Austronesian	pt?		(Tryon, 1970)
Wutung	Skou	pt?		(Marmion, 2010)
Vanimo	Skou	pt?		(Clifton, 1995)
Nouri	Skou	pt	Ø	(Donohue, 2010)

Typological Generalization: [Vt] implies [kV]

Results of Typological Survey

- Soft Generalizations:
 - [Vt] *usually* implies [Vp]
 - [Vp] *typically* implies [Vk]
- Categorical Generalization:
 - [Vt] implies [kV]

Stability Model

To model how learnability would shape soft typology, the **stability** of each pattern across many generations is tested.²⁰

- Patterns are rarely *perfectly* transmitted from teacher to learner
- Some patterns are more resilient to small errors—whereas others fall apart quickly across generations.

Generational stability is modeled by iterating a learning model.²¹

- First generation is trained from categorical data from the pattern in question.
- Data is cut off after a limited number (3200) of forms.
- The learner then produces forms from the grammar they have learned to train the next learner.

• And so on for 20 generations.

²⁰c.f. Hughto (2018): stability \neq interactive model i.e. Pater (2012); Hughto & Pater (2017) ²¹(Staubs, 2014: Dowman *et al.*, 2006)

Learning Model

Each learner uses a MaxEnt grammar.²²

- Constraints Used:
 - Place of Articulation scale: *k, *kp, *kpt
 - Onset vs. coda: ONSET, NOCODA
 - $\bullet~\mathsf{Faithfulness:}~\mathrm{Max}$
- Initial State²³
 - Markedness Constraints at 50
 - $\bullet~$ Faithfulness (Max) at 1

²²(Goldwater & Johnson, 2003)

²³⁽As in Jesney & Tessier 2011)

This graph represents the initial state of a learner in these learning simulations.

• Positive values on the y-axis represent forms where the consonant deletes more than it surfaces.

	50	50	50	50	50	1	
tV	*к	*KP	*KPT	Onset	NoCoda	Max	HARM
😰 a. tV			-1	 	1 		-50
b. V		1		-1		-1	-51

	50	50	50	50	50	1	
рV	*к	*KP	*KPT	Onset	NoCoda	Max	HARM
☞ a. pV		-1	-1		 	 	-100
b. V				-1	1	-1	-51

	50	50	50	50	50	1	
kV	*к	*KP	*KPT	Onset	NoCoda	Max	HARM
🖙 a. kV	-1	-1	-1	1 		 	-150
b. V				-1		-1	-51

	50	50	50	50	50	1	
Vt	*к	*KP	*KPT	Onset	NoCoda	Max	HARM
🔊 a. Vt		 	-1		-1		-100
b. V		1				-1	-1

	50	50	50	50	50	1	
Vp	*к	*KP	*KPT	Onset	NoCoda	Max	HARM
🖙 a. Vp		-1	-1	1 	-1	 	-150
b. V						-1	-1

-1 - (-	-200)) = 199
----------	-------	---------

	50	50	50	50	50	1	
Vk	*K	*KP	*KPT	Onset	NoCoda	Max	HARM
🖙 a. Vk	-1	-1	-1	1 	-1		-200
b. V		1				-1	-1

Introduction	Typology	Generational Model	Why?	References

Update Rule

Error-Driven Perceptron Algorithm (Rosenblatt, 1958; Boersma & Pater, 2016)

- On each iteration, teacher selects an input at random, and produces an output.
- The learner produces an output as well.
- If the learner and teacher differ, raise the weights on the constraints the learner violated, and lower the weights on the constraints the teacher violated.

Example

- Teacher: /tV/-[tV]
- Learner: /tV/-[V]

	50	50	50	50	50	1		
tV	*к	*KP	*KPT	Onset	NoCoda	Max	HARM	Prob
(T) a. tV			-1				-50	.73
(L) b. V			1	-1		-1	-51	.27

Update Rule

Error-Driven Perceptron Algorithm (Rosenblatt, 1958; Boersma & Pater, 2016)

- On each iteration, teacher selects an input at random, and produces an output.
- The learner produces an output as well.
- If the learner and teacher differ, raise the weights on the constraints the learner violated, and lower the weights on the constraints the teacher violated.

Example

- Teacher: /tV/-[tV]
- Learner: /tV/-[V]

	50	50	50↓	$50\uparrow$	50	$1\uparrow$		
tV	*к	*KP	*KPT	Onset	NoCoda	Max	HARM	Prob
(T) a. tV			1↓				-50↑	.73
(L) b. V			1	-1↑		-1↑	-51↓	.27

Update Rule

Error-Driven Perceptron Algorithm (Rosenblatt, 1958; Boersma & Pater, 2016)

- On each iteration, teacher selects an input at random, and produces an output.
- The learner produces an output as well.
- If the learner and teacher differ, raise the weights on the constraints the learner violated, and lower the weights on the constraints the teacher violated.

Example

- Teacher: /tV/-[tV]
- Learner: /tV/-[V]

	50	50	$49\downarrow$	$51\uparrow$	50	$2\uparrow$		
tV	*к	*KP	*KPT	Onset	NoCoda	Max	HARM	Prob
(T) a. tV			-1↓				-49↑	.98
(L) b. V			1	-1↑		-1↑	-53↓	.02

Generational Stability Results

Stability Rates formulated by running simulation 50 times using Soft Typology Tool (O'Hara, 2017)²⁴ for each pattern.

 A run is considered to be stable if: max(G₂₀(x))=G₀(x)

²⁴http://dornsife.usc.edu/ohara/stt/

Generational Stability Results

Stability Rates formulated by running simulation 50 times using Soft Typology Tool (O'Hara, 2017)²⁴ for each pattern.

 A run is considered to be stable if: max(G₂₀(x))=G₀(x)

Pattern	Stability (%)	
All Codas	84%	
PT-Codas	48%	
T-Codas	0%	
No Codas	92%	
No Dorsals	0%	

²⁴http://dornsife.usc.edu/ohara/stt/

Simulations capture observed soft generalizations

- Soft Generalizations:
 - ✓ [Vt] usually implies [Vp]
 - ✓ [Vp] *typically* implies [Vk]
- Categorical Generalization:
 - ✓ [Vt] implies [kV]

Pattern	Stability (%)/Observed (lgs)	
	84%	
All Couas	35 lgs	
	48%	
PT-Codas	6 lgs	
T-Codas	1 lg	1
	<u>92%</u>	
No Codas	31 lgs	
No Dorcola	0%	
	0 lgs	

- Most patterns decayed—marked forms were lost over time.
 - T-Coda runs quickly lost [Vt].
 - Unstable PT-Coda runs lost [Vp] eventually, and then quickly lost [Vt].
- Not the case for the No Dorsals runs.
 - In this case [kV] was learned accidentally while trying to learn [Vp]
- All patterns moved towards No-Codas.

- Most patterns decayed—marked forms were lost over time.
 - T-Coda runs quickly lost [Vt].
 - Unstable PT-Coda runs lost [Vp] eventually, and then quickly lost [Vt].
- Not the case for the No Dorsals runs.
 - In this case [kV] was learned accidentally while trying to learn [Vp]
- All patterns moved towards No-Codas.

- Most patterns decayed—marked forms were lost over time.
 - T-Coda runs quickly lost [Vt].
 - Unstable PT-Coda runs lost [Vp] eventually, and then quickly lost [Vt].
- Not the case for the No Dorsals runs.
 - In this case [kV] was learned accidentally while trying to learn [Vp]
- All patterns moved towards No-Codas.

- Most patterns decayed—marked forms were lost over time.
 - T-Coda runs quickly lost [Vt].
 - Unstable PT-Coda runs lost [Vp] eventually, and then quickly lost [Vt].
- Not the case for the No Dorsals runs.
 - In this case [kV] was learned accidentally while trying to learn $[\mathbf{Vp}]$
- All patterns moved towards No-Codas.

- Most patterns decayed—marked forms were lost over time.
 - T-Coda runs quickly lost [Vt].
 - Unstable PT-Coda runs lost [Vp] eventually, and then quickly lost [Vt].
- Not the case for the No Dorsals runs.
 - In this case [kV] was learned accidentally while trying to learn [Vp]
- All patterns moved towards No-Codas.

- Most patterns decayed—marked forms were lost over time.
 - T-Coda runs quickly lost [Vt].
 - Unstable PT-Coda runs lost [Vp] eventually, and then quickly lost [Vt].
- Not the case for the No Dorsals runs.
 - In this case [kV] was learned accidentally while trying to learn [Vp]
- All patterns moved towards No-Codas.

 \bullet Why is [kV] learned when training on the No-Dorsals pattern?

- [kV] is initially less marked than [Vp].
- MAX has less far to move to make [kV] licit in the language, than [Vp].
- Even though [**Vp**] moves faster,

 \bullet Why is [kV] learned when training on the No-Dorsals pattern?

- [kV] is initially less marked than [Vp].
- MAX has less far to move to make [kV] licit in the language, than [Vp].
- Even though [**Vp**] moves faster,

 \bullet Why is [kV] learned when training on the No-Dorsals pattern?

- [kV] is initially less marked than [Vp].
- MAX has less far to move to make [kV] licit in the language, than [Vp].
- Even though [**Vp**] moves faster,

• Why is [kV] learned when training on the No-Dorsals pattern?

- [kV] is initially less marked than [Vp].
- MAX has less far to move to make [kV] licit in the language, than [Vp].
- Even though [Vp] moves faster, it doesn't catch up in time.

Markedness Consistency

Learning Bias towards Markedness Consistent patterns.

- Markedness Consistent- A pattern *P* is markedness consistent iff for *x*, *y*; *x* is dispreferred by more net markedness constraints than *y* is, and *x* is part of a pattern, *y* is as well.
 - i.e. The most marked form allowed is not more marked than the least marked banned form.
- Learners prefer the patterns that are both *simple* and *markedness consistent*.

Typology

Generational Model

References

Common patterns are both *simple* and *markedness consistent*.

Simplicity is not sufficient—Simplicity alone cannot explain the generalization against the No Dorsals pattern.

Learning Bias can do more—The No Dorsals pattern is less stable than the more common patterns, due to interactions of the learning algorithm and the grammar, which cannot be collapsed into simplicity.

• Common and Easy to Learn patterns are Simple and Markedness Consistent

- With hard coded markedness constraints (a substantive bias), the typology can be captured.
- Can a bias like this Markedness Consistency bias arise if substantive bias is not present in the phonological grammar, but is due to channel bias?

Stay tuned, but looks like no

- How does stability extend to other domains?
 - Soft Typ Tool (O'Hara, 2017).

Works Cited I

- ANTTILA, ARTO. 1997. Deriving variation from Grammar. Pages 35-68 of: HINSKENS, FRANS, VAN HOUT, ROELAND, & WETZELS, LEO (eds), Variation, Change and Phonological Theory. Philadelphia, PA: John Benjamins.
- BANE, MAX, & RIGGLE, JASON. 2008. Three Correlates of the Typological Frequency of Quantity-Insensitive Stress Systems. In: Proceedings of the tenth meeting of the ACL Special Interest Group on Computational Morphology and Phonology.
- BOERSMA, PAUL, & PATER, JOE. 2016. Convergence properties of a gradual learning algorithm for Harmonic Grammar. In: MCCARTHY, JOHN J., & PATER, JOE (eds), Harmonic Grammar and Harmonic Serialism. Equinos.
- CLARK, ROSS. 1976. Aspects of Proto-Polynesian syntax. Te Reo Monograph.
- CLEMENTS, G. N. 2003. Feature economy in sound systems. Phonology, 20, 287-333.
- CLIFTON, JOHN M. 1995. Vanimo Organised Phonology Data. Tech. rept. SIL.
- COETZEE, ANDRIES. 2002. Between-language frequency effects in phonological theory. ms. University of Massachusetts Amherst.
- CULBERTSON, JENNIFER, SMOLENSKY, PAUL, & WILSON, COLIN. 2013. Cognitive biases, linguistic universals, and constraint-based grammar learning. *Topics in cognitive science*, 5(3), 392–424.
- DE GROOT, A. W. 1931. Phonologie und Phonetik als Funktionswissenschaften. Travaux du Cercle Linguistique de Prague, 4, 116–147.
- DE LACY, PAUL. 2006. Markedness: Reduction and Preservation in Phonology. Cambridge: Cambridge University Press.
- DONOHUE, MARK. 2010. Skou. In: Working Papers of the Automated Similarity Judgement Program.

Works Cited II

- DOWMAN, MIKE, KIRBY, SIMON, & GRIFFITHS, THOMAS L. 2006. Innateness and Culture in the evolution of language. In: CANGELOSI, A, SMITH, A., & SMITH, K. (eds), The Evolution of Language: Proceedings of the 6th international conference on the Evolution of Language.
- ELBERT, SAMUEL H., & PUKUI, MARY KAWENA. 1979. Hawaiian grammar. Honolulu: University of Hawaii Press.
- ESTEVAM, ADRIANA MACHADO. 2011. Morphosyntaxe Du Xavante. Ph.D. thesis, Universite Paris.Diderot (Paris 7).
- GOLDSMITH, JOHN A. 1990. Autosegmental and Metrical Phonology. Blackwell.
- GOLDWATER, SHARON, & JOHNSON, MARK. 2003. Learning OT constraint rankings using a Maximum Entropy model. In: Proceedings of the Workshop on Variation within Optimality Theory. Stockholm University.
- GREENBERG, JOSEPH H. 1978. Diachrony, synchrony, and language universals. Pages 61–91 of: GREENBERG, JOSEPH H., FERGUSON, C.A., & MORAVCSIK, E.A. (eds), Universals of human language, volume 1 method and theory. Stanford, CA: Stanford University Press.
- HAUDE, KATHARINA. 2006. A grammar of Movima. Ph.D. thesis, Radboud Universiteit Nijmegen.
- HOCKETT, CHARLES F. 1955. A manual of phonology. Baltimore, Maryland: Waverly Press.
- HUGHTO, CORAL. 2018. Investigating the Consequences of Iterated Learning in Phonological Typology. In: Proceedings of the Society for Computation in Linguistics, vol. 1.
- HUGHTO, CORAL, & PATER, JOE. 2017. Emergence of strict domination effects with weighted constraints. Talk given at the CLS Workshop on Dynamic Modeling in Phonetics and Phonology.
- HUGHTO, CORAL, STAUBS, ROBERT, & PATER, JOE. 2014. Typological consequences of agent interaction. Presented at the Northeast Computational Phonology Circle (NECPhon 8).
- JAKOBSON, ROMAN, & HALLE, MORRIS. 1956. Fundamentals of language. The Hague: Mouton.
- JESNEY, KAREN, & TESSIER, ANNE-MICHELLE. 2011. Biases in Harmonic Grammar: The road to restrictive learning. Natural Language & Linguistic Theory, 29.

Works Cited III

- KEAN, MARY-LOUISE. 1975 (June). The Theory of Markedness in Generative Grammar. Ph.D. thesis, Massachusetts Institute of Technology.
- KINGSTON, JOHN. 1985. The Phonetics and Phonology of the Timing of Oral and Glottal Events. Ph.D. thesis, University of California, Berkeley.
- LEGENDRE, GÉRALDINE, MIYATA, YOSHIRO, & SMOLENSKY, PAUL. 1990. Harmonic Grammar a formal multi-level conectionist theory of linguistic wellformedness: an application. Pages 884–891 of: ERLBAUM, LAWRENCE (ed), Proceedings of the Twelfth Annual Conference of the Cognitive Science Society.
- LI, FANG-KUEL 1946. Chipewyan. Pages 398–423 of: HOIJER, HARRY, BLOOMFIELD, LEONARD, & HAAS, MARY R. (eds), Linguistic Structures of Native America, vol. 6. New York: Johnson Reprint Corporation.
- LOMBARDI, LINDA. 2001. Why place and voice are different: Constraint-specific alternations in Optimality Theory. Pages 13–45 of: LOMBARDI, LINDA (ed), Segmental phonology in Optimality Theory: Constraints and Representations. Cambridge: Cambridge University Press.
- MARMION, DOUGLAS EDRIC. 2010. Topics in the Phonology and Morphology of Wutung. Ph.D. thesis, The Australian National University.
- MARTINET, ANDRÉ. 1968. Phonetics and linguistic evolution. Pages 464–487 of: MALMBERG, BERTIL (ed), Manual of phonetics.
- MCCARTHY, JOHN J. 1988. Feature Geometry and Dependency: A Review. Phonetica, 43(45), 84-108.
- MCCARTHY, JOHN J., & PRINCE, ALAN. 1995. Faithfulness and reduplicative identity. University of Massachusetts Occasional Papers, 18, 249–384.
- MCLEOD, RUTH, & MITCHELL, VALERIE. 2003. Aspectos da língua xavante. SIL International.
- O'HARA, CHARLIE. Word-Edge Consonant Database (ADD LINK).
- O'HARA, CHARLIE. 2017. Soft Typology Tool v. 0.1. Software package http://dornsife.usc.edu/ohara/stt/.

Works Cited IV

- PANKRATZ, LEO, & PIKE, EUNICE V. 1967. Phonology and morphotonemics of Ayulta Mixtec. International Journal of American Linguistics, 33(287-99).
- PATER, JOE. 2012. Serial Harmonic Grammar and Berber syllabification. Pages 43–72 of: BOROWSKY, TONI, KAWAHARA, SHIGETO, SHINYA, TAKAHITO, & SUGAHARA, MARIKO (eds), Prosody Matters: Essays in Honor of Elisabeth O. Selkirk. Equinox Press.
- PATER, JOE. 2016. Universal Grammar with Weighted Constraints. Pages 1–46 of: MCCARTHY, JOHN J., & PATER, JOE (eds), Harmonic Grammar and Harmonic Serialism. London: Equinox.
- PATER, JOE, & MORETON, ELLIOTT. 2012. Structurally biased phonology: complexity in language learning and typology. The EFL Journal, 3(2), 1–44.
- PRINCE, ALAN, & SMOLENSKY, PAUL. 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar. Oxford: Blackwell.
- RIGGLE, JASON. 2014. The Sampling Model of Variation. In: Proceedings of the 46th annual meeting of the Chicago Linguistics Society.
- ROSENBLATT, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408.
- STAUBS, ROBERT. 2014. Computational modeling of learning biases in stress typology. Ph.D. thesis, University of Massachusetts Amherst, Amherst.
- TRYON, D. T. 1970. Conversational Tahitian: An Introduction to the Tahitian Language of French Polynesia. Australian National University Press.

Works Cited I

- ANTTILA, ARTO. 1997. Deriving variation from Grammar. Pages 35-68 of: HINSKENS, FRANS, VAN HOUT, ROELAND, & WETZELS, LEO (eds), Variation, Change and Phonological Theory. Philadelphia, PA: John Benjamins.
- BANE, MAX, & RIGGLE, JASON. 2008. Three Correlates of the Typological Frequency of Quantity-Insensitive Stress Systems. In: Proceedings of the tenth meeting of the ACL Special Interest Group on Computational Morphology and Phonology.
- BOERSMA, PAUL, & PATER, JOE. 2016. Convergence properties of a gradual learning algorithm for Harmonic Grammar. In: MCCARTHY, JOHN J., & PATER, JOE (eds), Harmonic Grammar and Harmonic Serialism. Equinos.
- CLARK, ROSS. 1976. Aspects of Proto-Polynesian syntax. Te Reo Monograph.
- CLEMENTS, G. N. 2003. Feature economy in sound systems. Phonology, 20, 287-333.
- CLIFTON, JOHN M. 1995. Vanimo Organised Phonology Data. Tech. rept. SIL.
- COETZEE, ANDRIES. 2002. Between-language frequency effects in phonological theory. ms. University of Massachusetts Amherst.
- CULBERTSON, JENNIFER, SMOLENSKY, PAUL, & WILSON, COLIN. 2013. Cognitive biases, linguistic universals, and constraint-based grammar learning. Topics in cognitive science, 5(3), 392–424.
- DE GROOT, A. W. 1931. Phonologie und Phonetik als Funktionswissenschaften. Travaux du Cercle Linguistique de Prague, 4, 116–147.
- DE LACY, PAUL. 2006. Markedness: Reduction and Preservation in Phonology. Cambridge: Cambridge University Press.

DONOHUE, MARK. 2010. Skou. In: Working Papers of the Automated Similarity Judgement Program.

Works Cited II

- DOWMAN, MIKE, KIRBY, SIMON, & GRIFFITHS, THOMAS L. 2006. Innateness and Culture in the evolution of language. In: CANGELOSI, A, SMITH, A., & SMITH, K. (eds), The Evolution of Language: Proceedings of the 6th international conference on the Evolution of Language.
- ELBERT, SAMUEL H., & PUKUI, MARY KAWENA. 1979. Hawaiian grammar. Honolulu: University of Hawaii Press.
- ESTEVAM, ADRIANA MACHADO. 2011. Morphosyntaxe Du Xavante. Ph.D. thesis, Universite Paris.Diderot (Paris 7).
- GOLDSMITH, JOHN A. 1990. Autosegmental and Metrical Phonology. Blackwell.
- GOLDWATER, SHARON, & JOHNSON, MARK. 2003. Learning OT constraint rankings using a Maximum Entropy model. In: Proceedings of the Workshop on Variation within Optimality Theory. Stockholm University.
- GREENBERG, JOSEPH H. 1978. Diachrony, synchrony, and language universals. Pages 61–91 of: GREENBERG, JOSEPH H., FERGUSON, C.A., & MORAVCSIK, E.A. (eds), Universals of human language, volume 1 method and theory. Stanford, CA: Stanford University Press.
- HAUDE, KATHARINA. 2006. A grammar of Movima. Ph.D. thesis, Radboud Universiteit Nijmegen.
- HOCKETT, CHARLES F. 1955. A manual of phonology. Baltimore, Maryland: Waverly Press.
- HUGHTO, CORAL. 2018. Investigating the Consequences of Iterated Learning in Phonological Typology. In: Proceedings of the Society for Computation in Linguistics, vol. 1.
- HUGHTO, CORAL, & PATER, JOE. 2017. Emergence of strict domination effects with weighted constraints. Talk given at the CLS Workshop on Dynamic Modeling in Phonetics and Phonology.
- HUGHTO, CORAL, STAUBS, ROBERT, & PATER, JOE. 2014. Typological consequences of agent interaction. Presented at the Northeast Computational Phonology Circle (NECPhon 8).
- JAKOBSON, ROMAN, & HALLE, MORRIS. 1956. Fundamentals of language. The Hague: Mouton.
- JESNEY, KAREN, & TESSIER, ANNE-MICHELLE. 2011. Biases in Harmonic Grammar: The road to restrictive learning. Natural Language & Linguistic Theory, 29.

Works Cited III

- KEAN, MARY-LOUISE. 1975 (June). The Theory of Markedness in Generative Grammar. Ph.D. thesis, Massachusetts Institute of Technology.
- KINGSTON, JOHN. 1985. The Phonetics and Phonology of the Timing of Oral and Glottal Events. Ph.D. thesis, University of California, Berkeley.
- LEGENDRE, GÉRALDINE, MIYATA, YOSHIRO, & SMOLENSKY, PAUL. 1990. Harmonic Grammar a formal multi-level conectionist theory of linguistic wellformedness: an application. Pages 884–891 of: ERLBAUM, LAWRENCE (ed), Proceedings of the Twelfth Annual Conference of the Cognitive Science Society.
- LI, FANG-KUEL 1946. Chipewyan. Pages 398–423 of: HOIJER, HARRY, BLOOMFIELD, LEONARD, & HAAS, MARY R. (eds), Linguistic Structures of Native America, vol. 6. New York: Johnson Reprint Corporation.
- LOMBARDI, LINDA. 2001. Why place and voice are different: Constraint-specific alternations in Optimality Theory. Pages 13–45 of: LOMBARDI, LINDA (ed), Segmental phonology in Optimality Theory: Constraints and Representations. Cambridge: Cambridge University Press.
- MARMION, DOUGLAS EDRIC. 2010. Topics in the Phonology and Morphology of Wutung. Ph.D. thesis, The Australian National University.
- MARTINET, ANDRÉ. 1968. Phonetics and linguistic evolution. Pages 464–487 of: MALMBERG, BERTIL (ed), Manual of phonetics.
- MCCARTHY, JOHN J. 1988. Feature Geometry and Dependency: A Review. Phonetica, 43(45), 84-108.
- MCCARTHY, JOHN J., & PRINCE, ALAN. 1995. Faithfulness and reduplicative identity. University of Massachusetts Occasional Papers, 18, 249–384.
- McLEOD, RUTH, & MITCHELL, VALERIE. 2003. Aspectos da língua xavante. SIL International.
- O'HARA, CHARLIE. Word-Edge Consonant Database (ADD LINK).
- O'HARA, CHARLIE. 2017. Soft Typology Tool v. 0.1. Software package http://dornsife.usc.edu/ohara/stt/.

Works Cited IV

- PANKRATZ, LEO, & PIKE, EUNICE V. 1967. Phonology and morphotonemics of Ayulta Mixtec. International Journal of American Linguistics, 33(287-99).
- PATER, JOE. 2012. Serial Harmonic Grammar and Berber syllabification. Pages 43–72 of: BOROWSKY, TONI, KAWAHARA, SHIGETO, SHINYA, TAKAHITO, & SUGAHARA, MARIKO (eds), Prosody Matters: Essays in Honor of Elisabeth O. Selkirk. Equinox Press.
- PATER, JOE. 2016. Universal Grammar with Weighted Constraints. Pages 1–46 of: MCCARTHY, JOHN J., & PATER, JOE (eds), Harmonic Grammar and Harmonic Serialism. London: Equinox.
- PATER, JOE, & MORETON, ELLIOTT. 2012. Structurally biased phonology: complexity in language learning and typology. The EFL Journal, 3(2), 1–44.
- PRINCE, ALAN, & SMOLENSKY, PAUL. 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar. Oxford: Blackwell.
- RIGGLE, JASON. 2014. The Sampling Model of Variation. In: Proceedings of the 46th annual meeting of the Chicago Linguistics Society.
- ROSENBLATT, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408.
- STAUBS, ROBERT. 2014. Computational modeling of learning biases in stress typology. Ph.D. thesis, University of Massachusetts Amherst, Amherst.
- TRYON, D. T. 1970. Conversational Tahitian: An Introduction to the Tahitian Language of French Polynesia. Australian National University Press.

Not Just No Dorsals

No language with less than three (supralaryngeal) stops word-initially, have any word-finally.

Language	Family	Initial	Final			
Xavante	Macro-Ge	pt?	Ø	(McLeod &		
				Mitchell, 2003;		
				Estevam, 2011)		
Tahitian	Austronesian	pt?		(Tryon, 1970)		
Wutung	Skou	p t ?	ø	(Marmion, 2010)		
Vanimo – – – – –	Skou	pt?	ø	(Clifton, 1995)		
Nouri	Skou	pt -	Ø	(Donohue, 2010)		
Hawaiian	Austronesian	k p ?	Ø	(Elbert & Pukui,		
				1979)		
Yellowknife	Na-Dene	k p ?		(Li, 1946; de Lacy,		
Chipewyan				2006)		
Colloquial Samoan	Austronesian	k p ?		(Clark, 1976)		
Ayutla Mixtec	Oto-Manguean	kt?	2	(Pankratz & Pike,		
				1967)		

What happens if you get rid of ONSET

Why is [Vp] initially more marked than [kV]

- ONSET and NOCODA are separate constraints making the same distinction in this domain.
- By removing one of these constraints, a different picture arises.
- Without ONSET, the No-Codas pattern becomes unstable, and the No-Dorsals pattern becomes the attractor.
 - No Codas loses [kV], while gaining [Vt].

R-Volume Results

R-volume²⁵ has been used to model typological frequency.

- Calculated by sampling weights from uniform distribution 0-20
- Fails here to get the simplicity all-or-nothing bias.

	Onset			Coda			Percentage	
Zero	X	X	X	X	X	X	15.9	
Т	tV	X	X	X	X	X	30.8	
Tt	tV	X	X	Vt	X	X	3.6	
TP	tV	рV	X	X	X	X	22.9	
TPt	tV	рV	X	Vt	X	X	3.8	•
No Dorsals	tV	рV	X	Vt	Vp	X	1.5	- E
No Codas	tV	рV	kV	X	X	X	12.3	
T-Codas	tV	рV	kV	Vt	X	X	5.6	
PT-Codas	tV	рV	kV	Vt	Vp	X	2.8	1
All Codas	tV	рV	kV	Vt	Vp	Vk	.8	

²⁵(Anttila, 1997; Coetzee, 2002; Riggle, 2014)