

1. Overview

Language specific factors (phonetics, lexical frequency, etc.) can be associated with particular grammatical patterns.

Contour Tone Licensing patterns with language-specific duration properties (Zhang 2002), and syllable type frequency (here).

Two ways to model a typological association in constraint-based frameworks

- The language-specific factor is encoded directly into **Direct:** the constraint set. Possible with duration, but challenging with frequency.
- **Learning**: The language-specific factor influences the learnability of patterns, indirectly leading to the association. Frequency affects learnability (and phonetics might too).

CLAIM: Learning can capture associations between languagespecific factors and grammatical patterns.

- Syllable type frequency is associated with contour tone licensing patterns.
- Frequency conditions learnability, matching observed association.

Language-Specific Factors Influence Learnability: USCUniversity of Southern California Case Study from Contour Tone Licensing Charlie O'Hara charleso@usc.edu

/(V)O	CV(V)R
pì tǐɬ]	*[pì kʰǐn]
ní: l ton]	[těɪl ʔá]
y shot at	`they
nim'	extend'

3. Corpus Study

I extracted the type frequency of each syllable type from corpora of Navajo and Thai.

Navajo:

Frequencies from 39,767 lemmas extracted from Wiktionary (Cotterell et al 2017).

Only final syllables were counted

Thai

Frequencies from 2,961 words of child-directed speech I extracted from CRSLP-MARCS on Childes (Luksaneeyanawin 2000).

Navajo	CV(V)	CV(V)O	CV(V)R
Short	25%	25%	1%
Long	11%	37%	1%

Thai	CV(V)	CV(V)O	CV(V)R
Short	N/A	12%	25%
Long	27%	13%	23%

Navajo

Checked Syllables = 62%

Short Syllables = 51%

Navajo has more **checked syllables** than **short syllables**. Thai has more **short syllables** than **checked syllables**.

4. Learning Model

Generational MaxEnt-learner to uncover learning bias (Staubs 2014, Dowman et al 2006, Hughto 2018)

- Learners initialized: markedness high, faithfulness low.
- Limited amount of training data per generation.
- Resulting grammar trains next generation.
- Harder to learn \rightarrow more likely to change across generations. • Stability across 40 generations over 50 runs as learning metric.

On each iteration, the learner was exposed to a form from the target grammar, sampled according to the lexical frequencies.

- Three Lexical Frequency Conditions • Navajo, Thai and Control
- Two Target Grammar Conditions • Long Only, and Unchecked Only

Long only	CV(V)	CV(V)O	CV(V)R
Short	[CV]	[CVO]	[CVR]
Long	[CŇ:]	[CѶ:O]	[CŇ:R]
	or		
	U		
Unchecked	CV(V)	CV(V)O	CV(V)R
only			
Short	[CЎ]	[CVO]	[CŇR]
Long	[CŇ:]	[CV:0]	[CŇ:R]

Thai

Checked Syllables = 25% Short Syllables = 37%

Constraints Used: Ident-Tone, *Contour, *Contour/Short, *Contour/Checked

Learner

Stability	Long Only	Unchecked Only	Average Iterations	Long Only	Unchecked Only
Control	22%	24%	Control	2200	2200
Navajo	94%	10%	Navajo	1800	2400
Thai	0%	70%	Thai	>3000	1900

- average to reach 95% accuracy.

Correlation between lexical frequencies and contour licensors emerges from grammar w/o constraints referring to frequency.

Language specific properties can influence typology through learnability rather than being directly encoded in the grammar. • Looked at Frequency here, but other language-specific factors would influence learning as well.

FUTURE WORK: Phonetics skew observed input frequencies: Low duration syllables with contour tones are more likely to be misperceived/reduced.

Stability: Output grammar at Learner 40 = Original Target Grammar

5. Simulation Results

Lexical frequency conditions which pattern is more learnable.

Stability is correlated to the number of iterations needed on

Long Only: checked syllables > short syllables **Unchecked Only:** short syllables > checked syllables

Over generations, languages where the lexical frequency mismatches the pattern are more likely to be unstable.

6. Conclusion

• This channel bias affects the data presented to the learner, skewing the distribution towards longer duration forms.