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Abstract

In this paper, we present the results of neural
network modeling of speech production. We
introduce GestNet, a sequence-to-sequence,
encoder-decoder neural network architecture
in which a string of input symbols is translated
into sequences of vocal tract articulator move-
ments. We train our models to produce move-
ments of lip and tongue body articulators con-
sistent with a pattern of stepwise vowel height
harmony. Though we provide our models with
no linguistic structure, they reliably learn this
harmony pattern. In addition, by probing these
models we find evidence of emergent linguis-
tic structure. Specifically, we examine patterns
of encoder-decoder attention (degree of influ-
ence of specific input segments on model out-
puts) and find that they resemble the patterns
of gestural activation assumed within the Ges-
tural Harmony Model, a model of harmony
built upon the representations of Articulatory
Phonology. This result is significant as it lends
support to one of the central claims of the Ges-
tural Harmony Model: that harmony is the re-
sult of the harmony-triggering gestures extend-
ing to overlap the gestures of surrounding seg-
ments.

1 Introduction

In partial height harmony, some undergoer vowels
may assimilate only partially to a trigger vowel,
approaching the trigger’s height without matching
it. Partial height harmonies often proceed in a step-
wise, or chain-shifting, fashion, with each vowel
raising one step along a height scale. This is illus-
trated by the vowel raising harmony of Nzebi, a
Bantu language of Gabon (Guthrie, 1968; Kirchner,
1996; Parkinson, 1996; Smith, 2020b). In Nzebi,

the suffix /-i/ occurs immediately after verb roots
in some tenses and triggers one-step raising of pre-
ceding root vowels. Before this harmony triggering
suffix, high-mid vowels /e/ and /o/ surface as [i]

and [u], respectively; low-mid vowels /E/ and /O/

surface as [e] and [o], respectively; and low /a/

surfaces as [E]. This is illustrated by the data in (1).

(1) Root vowels in non-raising vs. raising con-
texts

a. [bet] [bit-i] ’carry’
b. [Bo:m] [Bu:m-i] ’breathe’
c. [sEb] [seb-i] ’laugh’
d. [mOn] [mon-i] ’see’
e. [sal] [sEl-i] ’work’

This pattern of stepwise vowel raising is summa-
rized in Figure 1.

i u
e o
E O

a

Figure 1: Pattern of vowel raising in the stepwise
height harmony of Nzebi

Smith (2020b) provides an analysis of Nzebi’s
stepwise height harmony within the Gestural Har-
mony Model (Smith, 2016, 2018), a theory of
vowel and vowel-consonant harmony couched
within the framework of Articulatory Phonology
(Browman and Goldstein, 1986, 1989). In this
model, harmony is analyzed as the result of the ex-
tension of a harmony-triggering gesture such that
it overlaps the gestures of surrounding segments.

In order to test the validity of this analysis, in this
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paper we introduce GestNet, a type of sequence-
to-sequence, encoder-decoder neural network ar-
chitecture, and use it to model this stepwise height
harmony pattern.1 GestNet takes as its inputs se-
quences of underlying phonological symbols and
outputs sequences of vocal tract articulator move-
ments. By providing our models with no linguis-
tic structure and probing their internal states, we
find emergent structure consistent with the linguis-
tic analysis of height harmony within the Gestural
Harmony Model.

The current work also contributes to the grow-
ing body of research that uses recurrent neural
networks to model aspects of phonology and its
interfaces. A large portion of this research has pri-
marily involved using recurrent neural networks as
phonotactic models by performing language mod-
eling tasks over strings of segments (Elman, 1990;
Rodd, 1997; Silfverberg et al., 2018; Mirea and
Bicknell, 2019; Mayer and Nelson, 2020; Rosen,
2021). Comparatively fewer models have been
presented that perform sequence-to-sequence map-
ping between underlying and surface phonological
forms. Gaskell et al. (1995) use a simple recurrent
network to model mappings from surface forms to
underlying forms of words exhibiting consonant
place assimilation. Prickett (2019) uses an encoder-
decoder model to map from underlying to surface
phonological forms that have undergone various
derivationally transparent and opaque processes.
Models that incorporate gestural, rather than featu-
ral, phonological forms are even less common. A
recent example of such work comes from Tilsen
(2020), who presents a model that maps articulatory
trajectories collected using electromagnetic artic-
ulography to patterns of gestural activation. By
contrast, GestNet is designed to map directly from
an input string of phonemes to an output string of
articulatory trajectories.

The paper is organized as follows. Section 2 in-
troduces the Gestural Harmony Model and summa-
rizes the analysis of Nzebi height harmony within
that model. Section 3 outlines our methods for con-
structing neural network models of height harmony,
including the data we used to train our models, the
architecture of our GestNet models, and our train-
ing procedures. Section 4 presents the results of
training, including model performance and inter-
pretability. Section 5 concludes.

1The code for GestNet, as well as our training data, can be
found at https://github.com/caitlinsmith14/
gestnet.

2 Height Harmony in the Gestural
Harmony Model

2.1 The Gestural Harmony Model
Gestures are the units of sub-segmental representa-
tion assumed within the framework of Articulatory
Phonology (Browman and Goldstein, 1986, 1989).
They are dynamically-defined, goal-based units,
with each gesture being specified for a target ar-
ticulatory state to be achieved during its period of
activation. This target state is specified in terms of
a primary articulator, a constriction location, and
a constriction degree. The constriction location of
a gesture is specified as a point or region along
the static surface of the vocal tract, while constric-
tion degree refers to the aperture of the constriction
between the primary articulator and the constric-
tion location. For instance, a gesture for the high
vowel /i/ can be specified as having a narrow con-
striction between the tongue body and the upper
surface of the vocal tract as its target articulatory
state. A number of additional parameters deter-
mine precisely how and when a gesture achieves its
target articulatory state; for reasons of space, they
are omitted from our discussion.

In gestural phonology, forms are often displayed
in a gestural score such as the one in Figure 2 for a
VCV sequence. In a gestural score, the activation
periods of vowel gestures are typically sequential,
with the second vowel in a sequence activating once
the previous vowel has deactivated. A vowel ges-
ture and the gesture of its onset consonant, mean-
while, typically activate synchronously.

Figure 2: Gestural score for a VCV sequence

The Gestural Harmony Model (Smith, 2016,
2018) adopts many aspects of the gestural represen-
tations of Articulatory Phonology. In this model,
harmony is the result of a gesture extending its
period of activation to overlap the gestures of pre-
ceding and/or following segments. A persistent,
or non-self-deactivating, gesture is one that does
not deactivate when its target articulatory state is
reached, but rather remains active and extends to
overlap the gestures of following segments. An
anticipatory, or early-activating, gesture is one that
activates before its scheduled starting point, extend-
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ing to overlap the gestures of preceding segments.
In the Gestural Harmony Model, harmony arises
when a segment includes a gesture that is either per-
sistent, anticipatory, or both; such a segment is a
trigger of harmony. Surrounding segments undergo
harmony as a result of their composite gestures
being overlapped by a harmony-triggering gesture.
This is illustrated by the gestural scores in Figure
3.

Figure 3: Harmony via overlap by a persistent gesture
(above) and by an anticipatory gesture (below)

Gestural overlap often results in the concurrent
activation of two gestures with antagonistic target
articulatory states (e.g., narrow vs. wide constric-
tion degree between the tongue body and the upper
surface of the vocal tract). The outcome of this
intergestural conflict is determined by the relative
blending strengths of each of the two antagonistic
gestures. According to the Task Dynamic Model of
speech production (Saltzman and Munhall, 1989;
Fowler and Saltzman, 1993), intergestural conflict
is resolved by blending the conflicting target ar-
ticulatory states of two gestures to create an inter-
mediate target state that holds during the period
of their concurrent activation. This blended target
state is the weighted average of the gestures’ indi-
vidual target articulatory states, with the weighting
in this averaging function contributed by the ges-
tures’ strength parameters, denoted ↵. This blend-
ing function is provided in Equation 1.

Target1 ⇥ ↵1 + Target2 ⇥ ↵2

↵1 + ↵2
(1)

The Gestural Harmony Model appeals to the con-
cept of blending between antagonistic gestures in
order to account for cases of transparency to har-
mony. Smith (2020a,b) proposes an extension of
the Gestural Harmony Model’s analysis of trans-
parency to cases of partial height harmony, which
are analyzed as cases of partial transparency. The
following section outlines such an analysis for the
stepwise partial height harmony of Nzebi.

2.2 A Gestural Analysis of Nzebi
Smith (2020b) proposes an analysis of the step-

wise height harmony of Nzebi within the Gestural
Harmony Model. We summarize this analysis here.

Smith proposes that the partial, stepwise vowel
raising harmony of Nzebi is the result of gestural
blending resulting from overlap of root vowels by
the anticipatory, harmony-triggering tongue body
gesture of the high suffix vowel /-i/. In this analy-
sis, the four vowel heights observed in Nzebi are
represented by vowel gestures with one of four
possible constriction degrees between the tongue
body and the upper surface of the vocal tract: nar-
row (4mm), narrow-mid (8mm), wide-mid (12mm),
and wide (16mm). When the narrow gesture of suf-
fix /-i/ extends to overlap a preceding vowel with
any other specified target constriction degree, it
results in gestural antagonism and blending.

When overlapped by suffix /-i/, high-mid root
vowels surface as high rather than resisting raising,
suggesting that they have a blending strength lower
than that of the triggering /-i/. This is illustrated in
Figure 4, in which the first [i] in the gestural score
is the result of raising.

Figure 4: /e-i/ ! [i-i]: blending of weak narrow-
mid and strong narrow vowel gestures results in narrow
tongue body aperture

Wide-mid vowels, on the other hand, raise to
only an intermediate degree when overlapped by
harmony-triggering /-i/, suggesting that /E/ and
/O/ have blending strengths equal to that of /-i/.
This is illustrated in Figure 5.

Figure 5: /E-i/ ! [e-i]: blending of equally strong
wide-mid and narrow vowel gestures results in narrow-
mid tongue body aperture

Finally, the wide vowel /a/ partially undergoes
harmony and partially resists it. Because /a/ is
specified for a strength that is twice the strength
of the trigger gesture that overlaps it, the result
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of blending is wide-mid [E], closer to the intrinsic
target constriction degree of wide /a/ rather than
narrow /i/. This is illustrated in Figure 6.

Figure 6: /a-i/ ! [E-i]: blending of narrow vowel ges-
ture with stronger wide vowel gestures results in wide-
mid tongue body aperture

This section has outlined the workings of the
Gestural Harmony Model and the analysis of Nzebi
height harmony within it. In order to test the va-
lidity of this analysis, the remainder of this paper
focuses on neural network modeling of a similar
pattern of stepwise height harmony.

3 Method

In this section we outline the makeup of our
datasets, the architecture of our models, and the
training procedures for those models.

3.1 Data
Due to the lack of a corpus of Nzebi speech, we
compiled a dataset of simulated speech meant to ap-
proximate the language’s stepwise height harmony
pattern. The data consisted of sixteen roots with
a shape of either C or VC, and seven suffixes con-
taining a single V, as in Table 1. All Vs were taken
from the set /i, e, E, a, O, o, u/, and consonants
were taken from the set /b, g/. The full dataset
comprised all possible root-suffix combinations,
112 in all.

In order to provide our models with no prior in-
formation on how many consonants and vowels
should make up the target language’s phonological
inventory, or which phoneme was being produced
in a given word, each segment of each morpheme
was provided with its own unique vector embed-
ding, which was learned throughout training. For
instance, the /i/ of the roots /ib/ and /ig/ and the
suffix /-i/ were all represented by separate embed-
dings. Likewise, the /g/ of stems /ig/, /eg/, /g/,
etc. were all represented by separate embeddings.

Each root-suffix combination (CV or VCV se-
quence) was paired with two articulatory trajec-
tories: one for the lip articulator and one for the
tongue body articulator. Each of these articulatory

Roots Suffixes
/ib/ /ig/ /i/

/eb/ /eg/ /e/

/Eb/ /Eg/ /E/

/ab/ /ag/ /a/

/Ob/ /Og/ /O/

/ob/ /og/ /o/

/ub/ /ug/ /u/

/b/ /g/

Table 1: Roots and suffixes in the dataset

trajectories was based on interpolation between the
target constriction degrees for different segments
provided by the speech synthesis toolkit TADA
(Nam et al., 2004). The intrinsic target constriction
degrees we assumed for each segment are provided
in Table 2.2 As a simplifying assumption, we rep-
resented articulatory trajectories as a series of ten
timepoints, with the first and last timepoints each
representing the neutral positions of the lip and
tongue body articulators assumed before and after
active speech. The medial eight timepoints were
made up of the articulatory positions assumed by
the two articulators during speech production. The
first four active timepoints correspond to the pro-
duction of the first syllable. In two-syllable words,
the next four timepoints correspond to the produc-
tion of the second syllable. For one-syllable words,
these timepoints were padded with the values of
the neutral positions of each articulator.

In order to mirror the stepwise height harmony of
Nzebi, the vowels of roots preceding a high suffix
vowel (either /i/ or /u/) were assigned the tongue
body constriction degree associated with vowels
one step higher along the height scale. For instance,
in a word like /eb-i/, the output tongue body tra-
jectory was consistent with a constriction degree
of 4, consistent with narrow vowels, rather than
a constriction degree of 8, during the production
of the first vowel. However, the vowels of roots
preceding non-high suffix vowel were assigned a
tongue body constriction degree associated with
the root vowel’s intrinsic target.

This is illustrated in Figure 7 for the input se-
quence /ib-a/. The input consists of a sequence of
three symbols: /i/, /b/, and /a/. The output con-
sists of a ten-point lip aperture sequence and a ten-

2We abstracted away from any difference in lip constriction
degree between back rounded and front unrounded vowels in
order to simplify the dataset.
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Segment Constriction Degree Target
i, u Tongue body 4
e, o Tongue body 8
E, O Tongue body 12
a Tongue body 16
b Lip -2
g Tongue body -2

Table 2: Constriction degree targets for each segment
type in the dataset

point tongue body aperture sequence. In the tongue
body sequence, the sequence begins and ends with
a value of 10, representing the neutral position of
the tongue body. During timepoints 2 through 5,
the tongue body approaches and achieves a value of
4, representing the target constriction degree for the
vowel /i/. The tongue body then approaches and
achieves a constriction degree value of 16, repre-
senting the target constriction degree for the vowel
/a/, during timepoints 6 through 9. At timepoints 6
and 7, lip aperture is -2, corresponding to the target
constriction degree of the labial consonant /b/.3

During the rest of the lip trajectory, the lip assumes
a neutral position of 5.

Figure 7: Sample output for sample input /ib-a/. Note
that y-axes are flipped to reflect lip/tongue body height.

3.2 Model Architecture
GestNet is a type of sequence-to-sequence, or
encoder-decoder, recurrent neural network (Cho
et al., 2014; Sutskever et al., 2014). Encoder-
decoder models were originally designed for sen-

3A negative target constriction degree is often assumed for
stop consonants in Articulatory Phonology. While the achieve-
ment of such a constriction degree is of course not physi-
cally possible, this ’virtual target’ allows models of speech to
achieve the kinematics and tight closure consistent with the
production of stop consonants.

tence translation tasks. In our case, the task can
be seen as a translation between a string of input
symbols and two sequences of continuous values
for articulator positions.

The role of the encoder in an encoder-decoder
network is to read each input symbol one at a time,
updating its hidden state at each timepoint. The
final hidden state of the encoder can be thought
of as containing all relevant information about the
input sequence. The first hidden state of the de-
coder then takes in that final encoder hidden state
and produces a predicted output at each time point
based on the previous timepoint’s hidden state and
predicted output.

Due to the relatively short memory of simple
recurrent neural networks, Bahdanau et al. (2015)
and Luong et al. (2015) propose the mechanism of
encoder-decoder attention. Rather than only pass-
ing the last encoder hidden state to the first decoder
hidden state via the recurrent connection between
them, encoder-decoder attention is intended to al-
low the decoder hidden state at any timepoint to
access information contained in all encoder hidden
states.

Our model architecture was implemented as fol-
lows. In the encoder, each unique segment in our
dataset (37 in total), is provided with an embedding
vector that is learned throughout training (Bengio
et al., 2003). From there, the embedding vector is
input to the hidden layer ht, as in Equation 2.

ht = tanh(Wxxt +Whht�1 + bh) (2)

Both the input vector xt and the hidden state vec-
tor of the previous time point ht�1 are multiplied
by their respective weight matrices, Wx and Wh,
summed along with the hidden state’s bias terms bh,
and passed through a tanh function. In the encoder,
the input vector xt is simply the embedding for the
input at timepoint t. In the decoder, the definition
of input vector xt is more involved. The encoder-
decoder attention mechanism is used to calculate a
weighted representation of encoder hidden states,
with each weight corresponding to how much atten-
tion the current decoder hidden state pays to each
encoder hidden state. First, the current decoder
hidden state ht is concatenated with each encoder
hidden state hi, multiplied by its weight matrix Wa,
and passed through a tanh function. The resulting
vector is then summed to produce the scalar ai, as
in Equation 3.

ai =
X

(tanh(Waconcat(ht, hi) + ba)) (3)
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Figure 8: Sequence-to-sequence recurrent neural network with encoder-decoder attention. For sample input /ig-a/,
the model outputs at each timepoint a two-dimensional vector containing predicted values for tongue body and lip
constriction degrees. While attention is shown as part of the input only to the first two decoder hidden states, it is
part of the input for all hidden states in our models.

The vector a containing a weighting scalar ai for
each encoder hidden state hi is then passed through
a softmax function to produce a probability distri-
bution over encoder hidden states. This distribution
is then used to perform a weighted sum of all of
the encoder hidden state vectors hi in matrix H to
produce the attention vector wt, as in Equation 4.

wt = softmax (a)H (4)

The vector wt containing a weighted sum of en-
coder hidden states is then concatenated with the
decoder output of the previous timestep, ŷt�1. The
resulting vector is the decoder’s xt, which is then
input to the hidden layer along with the hidden
layer from the previous time step, ht�1, as in Equa-
tion 5.

decoder xt = concat(ŷt�1, wt) (5)

Finally, the decoder produces a two-dimensional
output vector ŷt by multiplying the hidden state
vector ht by its weight matrix Wo, as in Equation
6. One value of ŷt corresponds to predicted lip
aperture, and the other to predicted tongue body
height.

ŷt = Woht (6)

At the first timepoint of the decoder, there is no
previous output ŷt�1 to concatenate with wt as in
Equation 5. In many encoder-decoder implementa-
tions, the first input to the decoder is the embedding
for a special start-of-sequence token. However, in
our model the decoder inputs and outputs are not
embeddings of words from a fixed vocabulary, but
rather continuous values for lip and tongue body
constriction degree. Because the use of a special
start-of-sentence token was not available to us, we
instead implemented the first input to the decoder

as a two-dimensional vector s whose values were
learned by the model throughout training.

The full sequence-to-sequence model architec-
ture is illustrated in Figure 8.

3.3 Training
We trained twenty models on data conforming to
the Nzebi-like stepwise height harmony pattern
described in Section 3.1.

Loss for a given trial was computed as the sum
of the squared error, summed across all ten output
timepoints and both articulators (lips and tongue
body), as in Equation 7.

L(ŷ, y) =
2X

art=1

10X

t=1

(y � ŷ)2 (7)

This loss was back-propagated through the model
after each trial. We used the Adam optimizer
(Kingma and Ba, 2015) and a learning rate of 0.001
to perform model parameter updates. We trained
each model for 200 epochs, at which point improve-
ment on loss appeared to plateau for all models.

Because the primary focus of the current work is
on model interpretability rather than model perfor-
mance, we made the decision not to partition the
data into training and test sets.

4 Results and Discussion

4.1 Model Performance
All models were able to learn to produce the train-
ing data with a high degree of accuracy. Across the
twenty models, the mean loss per word after 200
epochs was 3.51.

To illustrate model performance, we provide one
model’s output articulatory trajectories for the lips
and tongue body for the input forms /eb-a/, which
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should be produced faithfully as [eba], and /eb-i/,
which should be produced as [ibi] due to height
harmony. As seen in figures 9 and 10, the predicted
output trajectories for both vocal tract articulators
closely match the target trajectories. Importantly,
the model has learned that the /e/ of root /eb/

should be produced with a constriction degree of 8
(narrow-mid) before nonhigh vowels and a constric-
tion degree of 4 (narrow) before high vowels that
trigger harmony, correctly producing the Nzebi-
like stepwise vowel raising pattern.

Figure 9: Input /eb-a/ correctly produced as [eba]

Figure 10: Input /eb-i/ correctly produced as [ibi]

4.2 Model Interpretation
In order to probe our models for linguistic structure,
we examined patterns of attention between encoder
and decoder hidden states. We hypothesized that
the patterns of gestural activation in the gestural
score for a given form could be reflected in patterns
of encoder-decoder attention. For instance, if the
decoder at a certain timepoint attended highly to

1 2 3 4 5 6 7 8 9 10

a

b

e

Figure 11: Non-harmonizing Form: Attention over
input segments (vertical) at each decoder timepoint
(horizontal) for input /eb-a/. Lighter squares represent
more attention on that segment.

1 2 3 4 5 6 7 8 9 10
i

b

e

Figure 12: Harmonizing Form: Attention over input
segments (vertical) at each decoder timepoint (horizon-
tal) for input /eb-i/. Lighter squares represent more
attention on that segment.

an encoder hidden state associated with a certain
input segment, it could be interpreted as the gesture
associated with that input segment being active
(i.e. affecting the state of the vocal tract) at that
timepoint. In this way, we could use these encoder-
decoder attention maps as an analog of the gestural
score for a given word.

For this analysis, at each timepoint of the de-
coder we recorded the softmaxed vector of atten-
tion weights that determine how much or how little
each encoder hidden state affects the decoder hid-
den state. To control for cases in which an atten-
tion weight could be artificially inflated or deflated
according to the magnitudes of the values in its
associated encoder hidden state vector, each atten-
tion weight was normalized by multiplying it by
the magnitude of that vector.

Figures 11 and 12 show the attention heatmaps
for items /eb-a/ ! [eba] and /eb-i/ ! [ibi], whose
outputs were shown in figures 9 and 10. In these
heatmaps, high attention paid to an input segment at
a certain timepoint is indicated by a lighter square,
while low attention is indicated by a darker square.

The word /eb-a/ ! [eba] contains no harmony
trigger, and we would therefore expect no vowel
overlap, but rather activation of the gesture of [e]

followed by activation of the gesture of [a], as in
the gestural score for a VCV sequence in Figure
2. The attention map in Figure 11 shows that input
segment /e/ is highly attended to during the first
five decoder timepoints, while input segment /a/ is
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attended to during the last five decoder timepoints.
The medial input consonant /b/ is highly attended
to at timepoint 6, corresponding to the timepoint
at which the target constriction degree for the con-
sonant is first achieved. All of these patterns of
encoder-decoder attention are consistent with pat-
terns of gestural activation we would expect to see
in the gestural score for a non-harmonizing VCV
sequence.

In the word /eb-i/ ! [ibi], the second vowel is a
harmony-triggering high vowel, and the first vowel
raises one step along the height scale relative to
its intrinsic target tongue body constriction degree.
According to Smith’s (2020b) analysis of Nzebi
height harmony, this raising is the result of overlap
of the first vowel gesture by the second, as in Figure
4. The attention heatmap in Figure 12 is consistent
with this analysis. Again, input segment /e/ is at-
tended to during the first five decoder timepoints,
and input consonant /b/ is highly attended to at
a timepoint during which is has achieved its tar-
get constriction degree. However, for this word the
input segment /i/ is attended to, at least to some de-
gree, during all decoder timepoints associated with
active (i.e. non-neutral) positioning of vocal tract
articulators. This suggests that harmony-triggering
/i/ affects the state of the vocal tract throughout the
production of the word [ibi], and not just during
the production of the second syllable. We inter-
pret this as a result consistent with the analysis
of Nzebi height harmony within the Gestural Har-
mony Model: harmony is the result of the extended
activation of a harmony-triggering gesture, such
that that gesture overlaps the gestures of surround-
ing segments, the undergoers of harmony.

Variable � SE P(> |t|)
(Intercept) 1.64 0.12 < 0.001 ***

high V2 0.28 0.024 < 0.001 ***
time 0.005 0.010 0.61

Table 3: Summary of fixed effects for linear mixed ef-
fects model with attention on V2 as a dependent vari-
able, and random intercepts by model.

To test whether this result held widely among
the forms produced by all of our models, we ran
a linear mixed effects model over all two-syllable
(V1CV2) sequences produced by our twenty mod-
els using the lme4 package in R (Bates et al., 2015).
This analysis focused on the first five time steps of
the decoder, when V1 is produced, either blended

or unblended with V2. We used the identity of in-
put V2 as either a high harmony trigger (/i, u/) or
a non-high non-trigger and decoder timepoint as
main factors, model as a random factor, and the
attention value assigned to the encoder hidden state
associated with input V2 as the dependent variable.
We found a significant effect of input V2 identity
(whether V2 was a high vs. non-high vowel) on
the attention paid to input V2’s associated hidden
state (p < 0.001; further summary statistics can
be found in Table 3). This result suggests that the
decoder learns to pay more attention to a V2 at an
earlier timepoint when that V2 is a harmony trigger,
consistent with the representation of an anticipatory
(early-activating) gesture assumed by the Gestural
Harmony Model.

5 Conclusion and Future Work

In this paper, we have shown that sequence-to-
sequence neural network models of speech pro-
duction with encoder-decoder attention develop
emergent structure analogous to the symbolic rep-
resentations of the Gestural Harmony Model. In
particular, we have shown that our GestNet models
attend to their encoder hidden states in a pattern
similar to the timecourses of gestural activation
represented in a gestural score. We show that un-
like most vowels, harmony triggers are attended
to throughout the decoder’s outputs of articulatory
trajectories, mirroring the analysis of triggers of
regressive harmony as anticipatory gestures in the
Gestural Harmony Model.

While our current work has successfully found
evidence for the extended activation of harmony-
triggering gestures, there are still many avenues for
the development of additional methods for model
interpretability. This paper has focused on whether
encoder-decoder attention maps captured the antic-
ipatory nature of harmony triggering suffix vowels
in VCV sequences. Future work should investigate
how well attention maps perform at matching as-
sumed gestural scores for longer words and larger
and more complex lexicons.

Another open question involves whether we can
expect to find emergent linguistic structure corre-
sponding to additional gestural parameters in Gest-
Net and other neural network models of speech
production. Future work should probe our neu-
ral models for evidence of these parameters; for
instance, gestural strength might be analogous to
the magnitude of the hidden state vector that is
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weighted by the encoder-decoder attention mecha-
nism.

Another potentially fruitful domain of investi-
gation is intergestural coordination. An intriguing
question is whether gestures in particular coordina-
tion relations result in particular patterns of atten-
tion during one another’s production. Deeper inves-
tigation of attention maps in GestNet models may
also further shed light on which types of phono-
logical processes are better understood as resulting
from gestural overlap and/or re-coordination, and
which are better understood as alternations based
on changes in the gestural makeup of phonological
forms.
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