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In this paper, we examine the learnability of two apparently derivationally opaque 
vowel harmony patterns: attested chain-shifting height harmony and unattested 
saltatory height harmony. We analyze these patterns within the Gestural Harmony 
Model (Smith 2018) and introduce a learning algorithm for setting the gestural 
parameters that generate these harmony patterns. Results of the learning model 
indicate a learning bias in favor of the attested chain-shifting pattern and against 
the unattested saltation pattern, providing a potential explanation for the 
differences in attestation between these two derivationally opaque patterns. 
Furthermore, we show that feature-based learning models of these patterns show 
no such learning bias and provide no account of the typological asymmetry 
between chain-shifting and saltatory height harmony.  

1. Introduction 

In partial vowel height harmony, nonhigh vowels are raised, approaching the height of a high 
vowel trigger without necessarily reaching it. In a language with multiple vowel heights, there are 
multiple possible patterns that partial raising may follow. One possibility is that each vowel raises 
one ‘step’ along what can be considered a scale of vowel height; such patterns are sometimes 
referred to as stepwise height harmonies. 

One example of stepwise height harmony comes from Nzebi, a Bantu language spoken in 
Gabon (Guthrie 1968; Clements 1991; Kirchner 1996; Parkinson 1996). In Nzebi, the suffix /-i-/ 
occurs immediately after verb stems in some tenses. This high vowel triggers one-step raising of 
preceding non-reduced stem vowels, a process Guthrie (1968) refers to as yotization. As part of 
this raising process, the high-mid vowels /e/ and /o/ surface faithfully when no high suffix vowel 
follows, as in (1a‑c), but surface as [i] and [u], respectively, before suffix [i], as in (1d-f). 

(1) a. [bet] d. [bit-i] ‘carry’ 
b. [βoːm] e. [βuːm-i] 'breathe’ 
c. [kolən] f. [kulin-i] ‘go down’ 

The low-mid and low vowels also undergo raising when followed by suffix /-i-/, but do not 
surface as high vowels themselves. Underlying low-mid /ɛ/ and /ɔ/ surface faithfully in (2a‑d), and 
as high-mid [e] and [o], respectively, before suffix [i] in (2e-h). 

(2) a. [sɛb] e. [seb-i] ‘laugh’ 
b. [suɛm] f. [suem-i] ‘hide self’ 
c. [mɔn] g. [mon-i] ‘see’ 
d. [tɔːd] h. [toːd-i] ‘arrive’ 

Finally, underlying /a/ also surfaces faithfully in (3a-b), but undergoes single-step raising to 
surface as low-mid [ɛ] before suffix [i], as in (3c-d). 
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(3) a. [sal] c. [sɛl-i] ‘work’ 
b. [tsiat] d. [tsiɛt-i] ‘trample’ 

This sort of stepwise height harmony process resembles a synchronic chain shift. In a chain-
shifting phonological process, an underlying segment /X/ maps to surface [Y], while underlying 
/Y/ maps to surface [Z]. In Nzebi, height harmony creates a chain shift whereby /a/ → [ɛ], /ɛ/ → 
[e], and /e/ → [i]; while /ɔ/ → [o] and /o/ → [u]. 

Similar patterns of chain-shifting vowel raising are well-attested beyond this example from 
Nzebi. In Servigliano Italian, a similar pattern of one-step raising occurs among mid vowels 
(Camilli 1929; Kaze 1989; Nibert 1998; Mascaró 2011; Walker 2011). In Basaa, morphologically-
conditioned stem vowel mutation results in chain-shifting raising as well (Schmidt 1996). These 
patterns of vowel raising are illustrated in Figure (1). 
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(a) (b) (c) 
Figure (1): Patterns of vowel raising observed in (a) Nzebi height harmony; (b) Servigliano 

Italian metaphony; (c) Basaa morphological raising 

All of these chain-shifting vowel raising patterns are examples of what McCarthy (1999) and 
Baković (2007, 2011) refer to as underapplication opacity. Underapplication is broadly defined as 
a situation in which a phonological process appears not to have applied when it should have, i.e. 
despite its structural description having been met. For example, we can envision the pattern of 
vowel raising harmony in Nzebi as the result of a set of several vowel raising processes by which 
high-mid vowels raise to high, low-mid to high-mid, and low to low-mid. High-mid to high raising 
applies to underlying /e/ and /o/, deriving [i] and [u], respectively. However, the same process does 
not apply to the [e] and [o] that are derived from underlying /ɛ/ and /ɔ/ by low-mid to high-mid 
raising. Likewise, low-mid to high-mid raising applies to underlying /ɛ/ and /ɔ/, but underapplies 
to the [ɛ] derived from /a/ by low to low-mid raising. 

While stepwise, chain-shifting vowel raising patterns are well-attested, Parkinson (1996) 
observes that similar patterns involving exclusively two-step raising are apparently unattested. 
Several logically possible but unattested two-step vowel raising patterns are provided in Figure 
(2). In all of these hypothetical patterns, vowels raise either two steps in height or not at all, 
resulting in instances of saltation, a type of phonologically-derived environment effect. In a 
saltatory phonological process, an underlying segment /X/ maps to surface [Z] rather than [Y], 
despite X being more phonologically similar to Y than to Z. Meanwhile, underlying /Y/ maps 
faithfully to surface [Y]. For example, in Figure (2a), /ɛ/ raises to [i], ‘skipping over’ more similar 
[e], while underlying /e/ surfaces faithfully. 
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Figure (2): Unattested two-step vowel raising patterns 

Like chain shifts, saltations also represent examples of underapplication opacity. Again, we 
can envision the pattern of vowel raising in Figure (2a) as the result of a set of single-step vowel 
raising processes. For /ɛ/ to raise to [i], it must undergo two vowel raising processes: one raising 
low-mid vowels to high-mid, and one raising high-mid vowels to high. However, in order to derive 
a saltation the second of these processes must crucially apply only to high-mid vowels derived by 
low-mid to high-mid raising. The process can then be described as underapplying to underlying 
high-mid vowels. 

In both chain shifts and saltations, then, whether a process applies depends on the underlying 
versus intermediate status of a segment. Such a scenario presents difficulty for output-oriented 
phonological frameworks such as Optimality Theory (Prince & Smolensky 1993/2004) and 
Harmonic Grammar (Legendre et al. 1990; Smolensky & Legendre 2006), in which there are no 
intermediate forms and a segment’s status as either underlying or derived therefore does not factor 
into the evaluation of output candidates. The inability of Optimality Theory to generate many 
derivationally opaque patterns, including chain shifts and saltations, was uncovered quickly, as 
discussed in many of the papers compiled by Roca (1997), as well as by Kirchner (1996), 
McCarthy (1999), Łubowicz (2002), Moreton (2004), and Baković (2007), among others. 
Harmonic Grammar, in which constraints are weighted rather than strictly ranked, is similarly 
unable to generate chain shifts (Albright et al. 2008; Farris-Trimble 2008) and saltations (White 
2013; Hayes & White 2015; Smith to appear). 

In this paper, we propose an analysis of the chain-shifting partial height harmony of Nzebi that 
is situated within the Gestural Harmony Model (Smith 2018). In this model, the subsegmental 
units of phonological representation are gestures, the goal-based, dynamically-defined units of the 
framework of Articulatory Phonology (Browman and Goldstein 1986, 1989, et seq.). Vowel 
harmony is the result of a gesture extending to overlap the gestures of other segments in a word. 
We propose that cases in which vowels seem to partially undergo harmony, as in Nzebi height 
harmony, result from competition between gestures with conflicting articulatory targets. In doing 
so, we cast Nzebi height harmony as a derivationally transparent process. The same approach can 
be applied to the types of saltatory height harmonies depicted in Figure (2). However, we show 
that within the Gestural Harmony Model, predictions regarding the relative learnability of chain-
shifting and saltatory harmony are consistent with the attestedness of chain-shifting harmony and 
the unattestedness of saltatory harmony. We introduce the Gestural Gradual Learning Algorithm 
and present the results of learning models that utilize it. 

We also compare our learning results to those of feature-based computational learning models 
of chain-shifting and saltatory height harmony. While neither type of pattern is generable in either 
Optimality Theory or Harmonic Grammar utilizing the typical faithfulness constraints of 
Correspondence Theory (McCarthy & Prince 1995), several approaches have been developed to 
capture such phenomena. These include the adoption of constraints on featural scales 
(Gnanadesikan 1997) and of faithfulness constraints on specific input-output mappings rather than 
individual feature changes (Zuraw 2007; White 2013). Like the Gestural Harmony Model, these 
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theories of faithfulness can generate both chain shifts and saltations. However, we show that while 
an analysis situated within the Gestural Harmony Model can appeal to learnability to explain the 
unattestedness of saltatory harmony, there is no such learning bias against saltatory patterns under 
these alternative featural approaches. 

The paper is organized as follows. Section 2 provides an introduction to the phonological unit 
of representation assumed within Articulatory Phonology, the gesture, and describes the Gestural 
Harmony Model. Section 3 provides an analysis of the chain-shifting height harmony of Nzebi in 
that framework and shows how that framework can also be used to generate saltatory height 
harmony. Section 4 introduces the Gestural Gradual Learning Algorithm and presents the results 
of computationally modeling the learning of both chain-shifting and saltatory height harmony in 
the Gestural Harmony Model. Section 5 compares those results to those of learning models based 
on featural frameworks that are powerful enough to generate these derivationally opaque patterns. 
Section 6 concludes. 

2. Representing Harmony with Gestures 

2.1. Gestures as Phonological Units 

In our analysis of Nzebi height harmony, we assume that the units of subsegmental 
representation are gestures, as in Articulatory Phonology (Browman & Goldstein 1986, 1989, et 
seq.). In this framework, each gesture is specified for a target articulatory state, the achievement 
of which unfolds over time according to a dynamically-defined equation of motion. The length of 
time over which a gesture commands one or more articulators in the vocal tract to achieve its target 
state is its period of activation. When enough time has passed for its target state to be achieved, a 
gesture deactivates, allowing its articulators to return to their specified neutral positions until they 
are recruited by subsequent gestures. 

A gesture’s target articulatory state is specified in terms of a primary articulator, a constriction 
location, and a constriction degree. The constriction location of a consonantal gesture is specified 
as some point along the static surface of the vocal tract. Constriction degree refers to the aperture 
of the constriction between the primary articulator and the constriction location. For instance, a 
dorsal stop may be characterized in part by a gesture with a target articulatory state in which a 
closure (the constriction degree) is formed between the tongue body (the primary articulator) and 
the velum (the constriction location).  

Like dorsal consonants, vowels are usually assumed to include a tongue body gesture with a 
target constriction location specifying a point along the static surface of the vocal tract (e.g., palate, 
velum, uvula). However, this assumption does not admit the direct encoding of vowel height and 
backness, dimensions along which vowel are typically phonologically active. Therefore, we 
diverge from the standard gestural representation of vowels. According to the new representational 
scheme that we propose, vocalic gestures are still specified for constriction location and degree, 
just as consonantal gestures are. However, rather than specifying constriction location as a specific 
point along the vocal tract, we propose that each vowel is composed of two tongue body gestures 
whose constriction locations are specified for wider regions of the vocal tract. One of these gestures 
has a target constriction location comprising much of the upper surface of the vocal tract, including 
the palate and velum. The target articulatory state of this gesture is to make a constriction anywhere 
in this region. Its constriction degree determines a vowel’s height; a narrow constriction at the 
upper surface produces a high vowel, while a wide constriction produces a low vowel. The second 
of these vowel gestures has a target constriction location comprising much of the back surface of 
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the vocal tract, including the uvula and pharyngeal wall. The constriction degree of a tongue body 
back surface constriction gesture determines a vowel’s backness. A narrow constriction in this 
region produces a back vowel, while a wide constriction produces a front vowel. The target 
constriction locations for these vowel gestures are illustrated in Figure (3). 

  
(a) (b) 

Figure (3): (a) Constriction location for tongue body upper surface gesture; (b) constriction 
location for tongue body back surface gesture 

Adopting these constriction location regions for vocalic gestures allows for vowel height and 
backness to be encoded directly by gestural representations. The ability to gesturally represent 
vowel height is particularly important for formulating an analysis of Nzebi height harmony within 
the Gestural Harmony Model. 

2.2. The Gestural Harmony Model 

In the Gestural Harmony Model (Smith 2016, 2018), vowel and vowel-consonant harmony is 
the result of a gesture extending its activation period to overlap the gestures of other segments in 
a domain. To achieve this extended activation, Smith proposes that each gesture’s representation 
includes parameters determining whether it self-activates at its specified starting point as well as 
whether it self-deactivates once it reaches its target articulatory state. These parameters determine 
whether a gesture is a trigger of harmony. 

The effects of these gestural parameter specifications are illustrated in Figure (4). The top 
gesture is a typical self-activating and self-deactivating lip protrusion gesture, which is used to 
represent lip rounding. When this gesture reaches its target articulatory state (protruded lips), it 
self-deactivates. The middle gesture is a persistent gesture, which does not self-deactivate once it 
has reached its target articulatory state. Instead, it remains active, extending to overlap the gestures 
of following segments, thus triggering progressive (rightward) rounding harmony. To illustrate 
this extension, the dashed line indicates the point at which the gesture reaches its target articulatory 
state but does not deactivate. The bottom gesture is an anticipatory, or early-activating, gesture. 
The dashed line indicates the point at which the gesture is scheduled to start according to its 
position in a word. However, since it is an anticipatory gesture it has activated before that point, 
extending to overlap the gestures of preceding segments, thus triggering regressive (leftward) 
rounding harmony. 

Upper Surface 

Back 
Surface 
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(a) 

 
(b) 
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Figure (4): (a) Typical, (b) persistent, and (c) anticipatory lip protrusion gestures 

In the Gestural Harmony Model, harmony arises when a segment includes a gesture that is 
either persistent, anticipatory, or both; that segment is the trigger of harmony. Other segments 
undergo harmony when their composite gestures are overlapped by a harmonizing gesture. 

Figure (5) illustrates the workings of the model with a gestural score for an [o‑o] sequence, 
derived from underlying /o-ɤ/ by rounding harmony. The segmental transcription is provided along 
the top, and the subscript for each segment matches the subscripts of its composite gestures. In this 
gestural score, both vowels include a tongue body upper surface gesture with a wide constriction 
degree, indicating that they are nonhigh. In addition, they each include a tongue body back surface 
gesture with a narrow constriction degree, indicating that they are back vowels. The first [o] also 
includes a persistent lip protrusion gesture that overlaps the gestures of the following vowel, which 
surfaces as rounded as a result. The time course of lip protrusion below the gestural score indicates 
that the lips reach their target protruded state and remain there throughout the word. This is the 
basic representation of harmony within this model: overlap by a single, uninterrupted harmonizing 
gesture with an extended period of activation. 
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Figure (5): Rounding harmony due to overlap by a persistent lip protrusion gesture 

In some languages, certain segments may be transparent to a harmony process, appearing to 
have been skipped by the spread of a harmonizing property. For instance, if the vowel /i/ is 
transparent to a rounding harmony process, then an underlying vowel sequence such as /o-i-ɤ/ 
would surface as [o-i-o], with the third vowel surfacing as rounded while the medial vowel is 
seemingly unaffected. To account for such transparency, the Gestural Harmony Model takes 
advantage of the fact that gestures are goal-based units; while they are specified for a target 
articulatory state, they might not necessarily achieve it successfully. In this model, transparent 
segments are considered a special type of undergoer; rather than being skipped over by a harmony 
process, transparent segments are overlapped by a harmonizing gesture just as typical undergoer 
segments are. Transparency arises when gestural overlap results in antagonism, a situation in 
which two concurrently active gestures have opposing target articulatory states. Examples of 
antagonistic pairs of gestures include concurrently active gestures for lip protrusion and lip 
spreading, velum opening and velum closure, and narrow and wide constrictions at the upper 
surface of the vocal tract.  

Because the concurrent achievement of two conflicting target articulatory states is not possible, 
antagonistic gestures are essentially in competition with one another for control of the vocal tract. 
The outcome of the competition between antagonistic gestures is determined by the relative 
blending strengths that are specified for each gesture. According to the Task Dynamic Model of 
speech production (Saltzman and Munhall 1989; Fowler and Saltzman 1993), when gestural 
antagonism occurs, it is resolved by blending the competing target articulatory states of these 
gestures to create an intermediate target state that holds during the period of their concurrent 
activation. This blended target state is the weighted average of two gestures’ individual target 
articulatory states, and the weighting in this averaging function is contributed by the gestures’ 
strength parameters, denoted α. The gestural blending function is provided in (4). 

(4) Gestural blending function in the Task Dynamic Model of speech production 
 

Blended Target = 
Target1 ∙ α1 + Target2 ∙ α2

α1 + α2
 

Figure (6) contains the gestural score for an [o-i-o] sequence, illustrating transparency to 
rounding harmony via gestural blending. The persistent lip protrusion gesture of the first [o] 
overlaps the gestures of all other vowels. The third vowel in the sequence surfaces as rounded [o] 
due to this overlap. However, the medial high front /i/ surfaces as unrounded [i] rather than rounded 
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[y], despite also being overlapped by the lip protrusion gesture. This is because the representation 
of /i/ includes a lip spreading gesture in addition to its tongue body gestures. This lip spreading 
gesture is antagonistic to the harmony-triggering lip protrusion gesture and is specified for a 
relatively high gestural strength. In this example, its strength is ten times the strength of the 
harmonizing gesture. This allows the lip spreading gesture to counteract the effect of the 
harmonizing lip protrusion gesture upon the state of the vocal tract during the period of their 
concurrent activation. 

 
Figure (6): Transparency due to relatively strong antagonistic lip spreading gesture active 

during production of relatively weak harmonizing lip protrusion gesture 

There are several advantages to the representation of transparency to harmony as the result of 
the concurrent activation of antagonistic gestures. First, it correctly predicts that only those 
segments that include a gesture that is antagonistic to a harmonizing gesture may be transparent 
within a given type of harmony. Smith (2016, 2018) claims that this prediction is important for 
typological reasons: in rounding harmony and in nasal harmony, the sets of cross-linguistically 
attested transparent segments are limited to the classes of segments that include gestures that are 
antagonistic to a harmonizing gesture, as suggested by instrumental study. In addition, this model 
provides a representation of harmony in which spreading is completely local; harmony does not 
skip segments, even those that surface as transparent. 

The full transparency of high front [i] to rounding harmony in Figure (6) is dependent on the 
strength of its antagonistic lip spreading gesture being much greater than that of the harmonizing 
lip protrusion gesture. However, their strengths are not categorically ‘strong’ and ‘weak’ but rather 
are defined numerically. In this example, the strength ratio between the two gestures is 10‑to‑1. 
Because of this numerical definition of gestural strength, there is no restriction within the Gestural 
Harmony Model dictating that for a given pair of overlapped gestures, one must be much stronger 
than the other. Another possible scenario predicted by the model is one in which a harmonizing 
gesture and an overlapped antagonistic gesture have similar or even identical strengths. When such 
a scenario arises, the model generates a case of blending resulting in partial transparency and 
partial undergoing of harmony, as illustrated in Figure (7). 
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Figure (7): Partial transparency resulting from equal strengths of harmonizing and antagonistic 

gestures 

We propose that partial vowel height harmony represents just such a case of partial 
transparency. In the following section, we adopt the concept of gestural blending in our analysis 
of the partial, chain-shifting height harmony evident in Nzebi within the Gestural Harmony Model. 

3. A Gestural Analysis of Height Harmony 

3.1. Chain-Shifting Harmony in Nzebi 

As discussed in section 0, Nzebi exhibits a case of partial, chain-shifting vowel raising 
harmony. In this harmony pattern, high-mid undergoers fully assimilate to the height of the high 
front vowel trigger of harmony, while low-mid and low vowels only partially assimilate to the 
trigger height. The raising pattern in Nzebi is illustrated in Figure (8), repeated from Figure (1) 
above. 

i u 
e o 
ɛ ɔ 

a 
 

Figure (8): Pattern of vowel raising observed in Nzebi height harmony 

We propose that this pattern be treated as a case of partial transparency to harmony and 
analyzed as the result of gestural blending within the Gestural Harmony Model. In contrast with 
full transparency, in which the antagonistic gesture of a transparent segment is much stronger than 
the harmonizing gesture, partial height harmony represents a case in which the two blended 
gestures are closer in strength. 

This analysis relies on blending of the target constriction degrees of tongue body upper surface 
gestures for vowels of different heights. Each of the four vowel heights observed in Nzebi is 
represented by a tongue body upper surface gesture with one of four possible constriction degrees: 
narrow, narrow-mid, wide-mid, and wide. We analyze the vowel raising harmony in Nzebi as the 
result of overlap by an anticipatory upper surface gesture with narrow constriction degree that is 
part of the representation of the yotizing suffix high vowel /i/. Under this analysis, vowels that are 
specified for a wide-mid or wide constriction and that appear to be partially transparent to this 
vowel raising harmony are able to partially resist the raising effect of the triggering narrow vowel 
gesture because they are of similar blending strengths. The weaker high-mid vowels, on the other 
hand, surface as high rather than resisting raising, suggesting that they have a relatively much 
lower blending strength. 

Rather than simply referring to ‘relatively strong’ and ‘relatively weak’ gestures, this analysis 
provides a hand-picked set of precise gestural blending strengths that produce the desired surface 
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vowel constriction degrees for Nzebi raising harmony when input to the blending function in (4). 
Table (1) provides the vowels of each height with target constriction degrees for their tongue body 
upper surface gestures, as well as proposed strength values. The precise strength values proposed 
here are not crucial. Rather, it is the strength ratios between gestures that are important to the 
analysis. 

Vowel Target Constriction Degree Strength (α) 
/i/, /u/ narrow (4 mm) 10 
/e/, /o/ narrow-mid (8 mm) 1 
/ɛ/, /ɔ/ wide-mid (12 mm) 10 

/a/ wide (16 mm) 20 
Table (1): Target constriction degrees and gestural blending strengths for tongue body upper 

surface gestures of Nzebi vowels1 

As a result of gestural blending, narrow-mid vowels /e/ and /o/ fully undergo harmony and 
surface as raised when overlapped by the anticipatory upper surface gesture of suffix /i/. This is 
achieved by specifying that /e/ and /o/ have a much lower strength than /i/. As shown in (5), the 
gestural blending function produces a blended target constriction degree of 4.36 mm, very similar 
to the 4 mm constriction degree of a narrow vowel trigger listed in Table (1). 

(5) Gestural blending of narrow and narrow-mid vowels 
 

/i/ /e/, /o/ 
    

4.36	mm = 
4	mm ∙ 10 + 8	mm ∙ 1

10 + 1  

This blending is illustrated by the gestural score in Figure (9) for the upper surface gestures of 
a Nzebi word such as [bit-i] ‘carry,’2 in which the first [i] is the result of raising of an underlying 
/e/. The accompanying time course of tongue body height indicates that the underlying narrow-
mid vowel /e/ fully undergoes harmony and surfaces as [i] when it is overlapped by the anticipatory 
upper surface gesture of a following, stronger narrow vowel [i]. 

 
1 Unlike /i/, the high vowel /u/ is not a trigger of raising harmony and does not overlap other vowels. As a result, we 
cannot determine the blending strength of /u/. We have opted here to provide it with a blending strength identical to 
its fellow high vowel /i/, but this assumption is not crucial. 
2 In this and all following gestural scores, to reduce visual clutter we show only the vowels’ tongue body upper surface 
gestures, though we assume that all vowels also include a tongue body back surface gesture and that round vowels 
include a lip protrusion gesture. 
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Figure (9): Gestural score for [i-i] sequence illustrating narrow-mid to narrow vowel raising 

due to gestural blending 

Wide-mid and wide vowels, on the other hand, resist fully undergoing harmony, but also do 
not surface as fully transparent to harmony. Focusing first on the wide-mid vowels, partial 
transparency is produced by providing narrow trigger /i/ and wide-mid undergoers /ɛ/ and /ɔ/ with 
equal strengths. The blending function does not favor the target articulatory state of one gesture 
over the other, but instead returns a target constriction degree of 8 mm, as shown in (6). This 
blended target is intermediate between the two vowels’ antagonistic target constriction degrees 
and consistent with that of the underlying narrow-mid vowels, producing one-step raising. 

(6) Gestural blending of narrow and wide-mid vowels 
 

/i/ /ɛ/, /ɔ/ 
  

8	mm = 
4	mm ∙ 10 + 12	mm ∙ 10

10 + 10  

As a result of this blending calculation, /ɛ/ and /ɔ/ only partially undergo harmony and surface 
as partially raised. The gestural score in Figure (10) includes the upper surface gestures of a word 
such as [seb-i] ‘laugh,’ in which the [e] is the result of raising. The time course of tongue body 
height shows that the underlyingly wide-mid vowel /ɛ/ only partially undergoes harmony, 
surfacing as [e] when it is overlapped by the upper surface gesture of a following narrow vowel 
[i]. 

 
Figure (10): Gestural score for [e-i] sequence illustrating wide-mid to narrow-mid vowel raising 

due to gestural blending 

Finally, the low vowel /a/ also resists fully undergoing harmony and surfaces as partially 
transparent. However, rather than surfacing with a blended target constriction degree that is 
halfway between the two antagonistic target constriction degrees, the blending function in (7) 
favors the target articulatory state of the stronger low vowel. This produces a target constriction 
degree of 12 mm, consistent with the target of the wide-mid vowels. 
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(7) Gestural blending of narrow and wide vowels 
 

/i/ /a/ 
    

12	mm = 
4	mm ∙ 10 + 16	mm ∙ 20

10 + 20  

The somewhat higher blending strength of the upper surface gesture of wide /a/ relative to 
narrow /i/ is not sufficient to produce full transparency to harmony, but rather one-step raising. 
This is illustrated by the gestural score and time course of tongue body height in Figure (11) for a 
word such as [sɛl-i] ‘work.’3 

 
Figure (11): Gestural score for [ɛ-i] sequence illustrating low to wide-mid vowel raising due to 

gestural blending 

This section has demonstrated that when vocalic upper surface gestures of different 
constriction degrees are provided with the proper strength values, the mechanism of gestural 
blending can be recruited by the Gestural Harmony Model to produce blended target constriction 
degrees that are consistent with the chain-shifting vowel raising pattern in Nzebi. Due to overlap 
by the anticipatory upper surface gesture of a harmony-triggering anticipatory narrow vowel, 
underlyingly narrow-mid vowels are fully raised and surface as narrow, while underlyingly wide-
mid and wide vowels only partially undergo raising. All of these outcomes arise from their upper 
surface gestures’ individual specifications for constriction degree and blending strength. 

As discussed in section 1, synchronic chain shifts pose a challenge for most feature-based 
analyses in output-oriented Optimality Theory and Harmonic Grammar. The success of the 
Gestural Harmony Model in accounting for the apparently chain-shifting height harmony of Nzebi 
is due to its not actually being represented as a chain shift, but rather as a derivationally transparent 
pattern. In Nzebi, gestural blending between trigger and undergoer vowel gestures produces the 
effect of vowel raising. However, the individual gestures that make up the underlying 
representation of each vowel are still present and unaltered in the gestural score of a surface form, 
as shown in Figure (12). 

 
3The /a/ → [ɛ] mapping appears to involve not only raising but fronting of /a/. We assume that /a/ is not specified as 
a back vowel, but rather that its apparent centrality/backness stems from the hinge-like movement of the jaw, with 
some vowel backing occurring automatically for vowels that involve a lower jaw height. 
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(a) (b) 

Figure (12): (a) An [e-i] sequence derived from an underlying /ɛ-i/ sequence via gestural 
overlap; (b) An [e-i] sequence surfacing faithfully from an underlying /e-i/ sequence 

While an [e] derived by gestural overlap and blending between /ɛ/ and /i/, as in Figure (12a), 
and an [e] that surfaces faithfully from an underlying /e/, as in Figure (12b), may be articulatorily 
and acoustically the same, their gestural makeups are different in both the phonological input and 
output. Such an approach is unavailable to featural representations of this process. In a feature-
based account, a surface [e] that is derived from /ɛ/ is featurally indistinguishable from one that 
surfaces faithfully from /e/. Therefore, it is difficult to explain why a high-mid to high raising 
process underapplies to an [e] derived from /ɛ/. In the Gestural Harmony Model, on the other hand, 
this underapplication opacity is only apparent, and chain-shifting height harmony need not be 
modeled as a derivationally opaque process. 

3.2. Saltatory Height Harmony 

With a different set of strength value settings, the Gestural Harmony Model is also able to 
generate unattested saltatory height harmonies such as those provided in Figure (2), repeated in 
Figure (13). 

i u 
e o 
ɛ ɔ 

a 
 

i u 
e o 
ɛ ɔ 

a 
 

i u 
e o 

a 
 

(a) (b) (c) 
Figure (13): Unattested two-step vowel raising patterns 

Table (2) provides a set of hand-picked gestural strengths that generate a two-step raising 
process consistent with the one depicted in Figure (13a). As in the analysis of chain-shifting height 
harmony, it is the strength ratios between the different vowels that are crucial to deriving the 
pattern, rather than the exact values we provide. 

Vowel Target Constriction Degree Strength (α) 
/i/, /u/ narrow (4 mm) 25 
/e/, /o/ narrow-mid (8 mm) 350 
/ɛ/, /ɔ/ wide-mid (12 mm) 1 

/a/ wide (16 mm) 20 
Table (2): Target constriction degrees and gestural blending strengths for upper surface 

gestures of vowels in a saltatory height harmony system 
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As the values in Table (2) indicate, the strength values necessary to generate saltatory two-step 
raising are more extreme than those necessary to generate chain-shifting one-step raising. In Nzebi, 
the greatest proposed strength necessary to generate chain-shifting height harmony was 20 for the 
low vowel /a/. In contrast, the greatest proposed strength necessary to generate saltatory harmony 
in Table (2) is 350 for the high-mid vowels /e/ and /o/. To understand the reason for this difference, 
we introduce the idea of overpowering relations between blended gestures. In order for a segment 
X to fully assimilate to a segment Y via gestural overlap, the strength of Y’s gesture must be 
exponentially higher than that of X. In other words, Y must overpower X. Conversely, in order for 
segment X to fully resist assimilation to a segment Y, the strength of X’s gesture must be 
exponentially higher than that of Y; X must overpower Y. When one segment only partially 
assimilates to another due to gestural overlap, no overpowering relation exists between them. Thus, 
an exponential difference in strength is not necessary, and their gestural strengths may be more 
similar. 

In order to estimate the greatest gestural strength necessary to produce a certain harmony 
pattern, we can examine chains of overpowering relations that exist between the gestures of vowels 
in an inventory. Each additional overpowering relation in a chain indicates an order of magnitude 
of strength that must be reached by the strongest gesture in the vowel inventory. For instance, in 
the saltatory height harmony in Figure (13a), if the narrow vowels /i/ and /u/ act as triggers of 
raising harmony, they must be overpowered by narrow-mid /e/ and /o/, as these vowels completely 
resist assimilation to the narrow vowels. In addition, the narrow vowels must themselves 
overpower wide-mid /ɛ/ and /ɔ/, as those vowels completely assimilate to the narrow vowels. 
Therefore, the longest chain of overpowering relations among vowels in the saltatory harmony 
pattern is two links long, indicating that the strongest vowel(s) in the inventory must include a 
gesture that is about two orders of magnitude stronger than that of the weakest vowel(s). 

In a chain-shifting height harmony triggered by high vowels /i/ and /u/, on the other hand, no 
vowels completely resist assimilation, and only the narrow-mid vowels /e/ and /o/ assimilate 
completely to the high vowel triggers of harmony. Therefore, high vowels /i/ and /u/ must only 
overpower the narrow-mid vowels, and the longest chain of overpowering relations in the chain-
shifting harmony pattern is one link long. This indicates that the strongest vowel(s) in the inventory 
must be approximately one order of magnitude stronger than the weakest vowel(s). 

The Gestural Harmony Model, then, is able to generate two types of apparently derivationally 
opaque height harmony patterns via the settings of the relative strength values of vowel gestures. 
As with chain-shifting height harmony, the model’s ability to generate saltatory height harmony 
arises from the fact that the process arises from gestural overlap and blending, and is represented 
as a derivationally transparent pattern, despite its appearance as a case of underapplication opacity.  

On its own, the Gestural Harmony Model provides no explanation for the difference in 
crosslinguistic attestation between these two types of derivationally opaque types of partial height 
harmony. While chain-shifting height harmony is fairly well-attested, saltatory height harmony is 
apparently unattested. In the following section, we show that the difference in the extremeness of 
the gestural strengths necessary to generate saltatory and chain-shifting height harmony has 
important consequences for the relative learnability, and therefore the robustness of attestation, of 
chain-shifting and saltatory height harmony patterns. 

4. The Gestural Gradual Learning Algorithm 

The analysis of chain-shifting Nzebi height harmony presented in section 3.1 depends on a 
fairly precise set of strength ratios between the tongue body upper surface gestures of vowels at 
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different heights. In this section, we address how a learner of this height harmony system acquires 
these gestural strength settings. In addition, we examine whether a learner is capable of acquiring 
a set of gestural strengths that produces an unattested saltatory height harmony system, and 
whether there is an emergent learning bias against saltatory height harmony that could explain its 
lack of crosslinguistic attestation. 

We adopt the view that the attestation of a phonological pattern is not only impacted by which 
patterns are generable by a given grammatical framework, but also how learnable that pattern is 
within that framework. Any learning algorithm that efficiently searches a large space of possible 
phonological grammars is inherently biased toward some over others. According to this view, 
easier-to-learn patterns are learned more rapidly, requiring exposure to fewer data points in order 
to be learned accurately. If learners are exposed to a finite number of input data, harder-to-learn 
patterns that require exposure to more data points are more susceptible to being mislearned, and 
are more likely to change across generations. This sort of learning bias (or analytic bias) has been 
argued to be responsible for a variety of asymmetries in phonological typology (Wilson 2006, 
Moreton 2008, Pater & Moreton 2012, Staubs 2014, Hayes & White 2015, Jarosz 2016, Stanton 
2016, Hughto 2020, McCollum et al. 2020, O’Hara 2021). Typologically, we expect harder-to-
learn patterns to be less well-attested than their easy-to-learn counterparts, all else held equal. 

4.1. Learning Simulation Setup 

To address the question of whether a learning bias is responsible for the lack of attestation of 
saltatory vowel height harmony, we designed a gesture-based computational learning model. In 
this model, the learner is tasked with setting the constriction degree targets and blending strengths 
for vowel gestures such that the learner accurately reproduces its teacher’s height harmony pattern. 
In addition, we tasked the learner with setting these same gestural parameter values for the dorsal 
consonant /ɡ/, whose primary oral gesture uses the tongue body as its primary articulator and is 
therefore blended with concurrently active vowel gestures. The constriction degrees of /ɡ/ and the 
vowels are in conflict: while /ɡ/ is specified for closure, all vowels are specified for different 
degrees of openness. The result of this conflict is blending of these gestures’ individual target 
constriction degrees. 

We tested the learner on two types of harmony in languages with a four-height vowel 
inventory: (1) a Nzebi-like pattern of one-step raising before high vowel triggers /i/ and /u/, and 
(2) an unattested pattern of two-step saltatory raising before high vowel triggers /i/ and /u/ similar 
to the one depicted in Figure (13a) in section 3.2. We assume that the learner has already learned 
a phonological grammar that produces regressive height harmony due to a high vowel’s 
anticipatory tongue body upper surface gesture overlapping the gestures of previous segments. 
Here, the learning task is to determine the settings of each dorsal segment’s constriction degree 
and blending strength such that that overlap results in either chain-shifting or saltatory height 
harmony. All words in the training data for both pattern types were of shape (V)CV, with vowels 
and consonants coming from the inventory in Table (3). 
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Segment Primary Articulator Constriction Location  Constriction Degree 
/i/, /u/ tongue body upper surface 4 mm 
/e/, /o/ tongue body upper surface 8 mm 
/ɛ/, /ɔ/ tongue body upper surface 12 mm 

/a/ tongue body upper surface 16 mm 
/ɡ/ tongue body velum -2 mm 
/b/ lower lip upper lip -2 mm 

Table (3): Segment inventory of training dataset4 

The learner utilizes an error-driven learning algorithm that we introduce here: the Gestural 
Gradual Learning Algorithm, which is defined as in (8). 

(8) The Gestural Gradual Learning Algorithm5 

1. Initialize each gesture in the learner’s inventory with a target constriction degree of 
16 mm (i.e., all segments start as /a/) and a random strength (between 1 and 20). 

2. On each iteration, randomly generate a (V)CV sequence. 
3. Check for gestural blending: 

a. If V2 is a trigger of harmony, it overlaps V1, resulting in blending. 
b. V2 overlaps a preceding C. If C is a dorsal /ɡ/, this overlap results in blending. 

4. If the learner produces an error (a segment with a constriction degree more than 0.2 
mm from the teacher’s production): 
a. Update the constriction degree target of the learner’s tongue body gestures to 

produce a constriction degree that better matches the teacher’s output. 
b. In cases of blending, update the strength of the learner’s tongue body gestures to 

produce a constriction degree that better matches the teacher’s output. 

On each training iteration, a random (V)CV sequence is generated based on a uniform 
distribution of the vowels and consonants in Table (3). Both the learner and the teacher produce 
this sequence based on their current gestural parameter settings. The learner compares its 
production to its teacher’s, and updates its gestural constriction degree targets and/or strengths 
when it makes an error. An error is considered to have occurred when a learner produces a 
constriction degree that does not fall within a set window around the teacher’s produced 
constriction degree for a given segment. Here, we use a window of 0.2 mm. 

We illustrate the workings of this algorithm with two sample learning iterations. In the first, 
depicted in Figure (14), the teacher produces the underlying CVC sequence /abi/ as [ɛbi], with 
one-step raising resulting from the presence of a harmony-triggering V2. The learner, on the other 
hand, produces this form as [a̝bi], with a wider constriction degree than the teacher’s during 
production of V1. Because this form includes a harmony trigger and therefore involves blending 
of the two vowel gestures, the learner must update the target constriction degrees and strengths of 
both vowel gestures such that, when blended, they produce a vowel with a narrower constriction 
between the tongue body and the upper surface of the vocal tract. Specifically, the learner updates 
the constriction degree targets for both /a/ and /i/ so that they will each be produced with greater 

 
4 A negative target constriction degree is often assumed for stop consonants in Articulatory Phonology. While the 
achievement of such a constriction degree is of course not physically possible, this ’virtual target’ allows models of 
speech to achieve the kinematics and tight closure consistent with the production of stop consonants. 
5 A Python implementation of this algorithm is available at [[web address redacted for anonymity]]. 
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constriction; both of these updates will also produce a higher tongue body position when /a/ and 
/i/ are blended. In addition, the learner updates the strengths of these gestures, increasing the 
strength of /i/ and decreasing the strength of /a/. Again, both of these updates produce a higher 
tongue body position when /a/ and /i/ are blended. 

 
Figure (14): Sample learning trial comparing learner’s production (solid) and teacher’s 

production (dashed) of underlying /abi/ 

In the next example, depicted in Figure (15), the teacher produces the underlying CVC 
sequence /ɛɡa/ as [ɛɡa], with no raising of the first vowel. The learner produces this form as [ɛ̝ɣa], 
with a narrower constriction degree than the teacher for V1 and a wider constriction degree for the 
dorsal consonant. Because the learner’s production of [ɛ̝] depends only on the vowel’s constriction 
degree target and involves no blending between vowel gestures, the learner updates only that target 
for the tongue body gesture of /ɛ/ by increasing (i.e. widening) its target constriction degree. 
However, blending does occur between the dorsal consonant /ɡ/ and the second vowel /a/ during 
the production of the consonant. The result is the velar approximant [ɣ] rather than the stop [ɡ] 
produced by the teacher. Therefore, the learner updates both the constriction degree targets and 
strengths of the gestures of /ɡ/ and /a/ such that they produce a narrower constriction degree when 
blended. The target constriction degrees of both gestures are decreased (i.e. narrowed), the 
blending strength of /ɡ/ is increased, and the blending strength of /a/ is decreased. 
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Figure (15): Sample learning trial comparing learner’s production (solid) and teacher’s 

production (dashed) of underlying /ɛɡa/ 

Using the Gestural Gradual Learning Algorithm, we ran 100 models tasked with learning 
chain-shifting height harmony and 100 tasked with learning saltatory height harmony. All models 
were trained until convergence, which occurred when all (V)CV sequences were produced without 
errors (i.e. with every segment’s constriction degree was produced within 0.2 mm of the teacher’s 
production). Results of our learning simulations are reported in the following section. 

4.2. Results and Discussion 

All of the two hundred models we trained (one hundred per target height harmony pattern) 
converged upon the target pattern presented to the learner during training. In addition, these models 
acquired values for gestural blending strength and target tongue body constriction degree that are 
comparable to our hand-picked values provided in section 3. The mean gestural parameter values 
acquired by our models at the end of training are provided in Table (4). Note that the overpowering 
relations between gestures parallel those in our analysis in section 3. In chain-shifting height 
harmony, triggering /i/ and /u/ overpower fully raising /e/ and /o/, match the strength of partially 
raising /ɛ/ and /ɔ/, and are doubled in strength by slightly raising /a/. In saltatory height harmony, 
triggering /i/ and /u/ are overpowered by fully resistant /e/ and /o/ but overpower fully raising /ɛ/ 
and /ɔ/ and double the strength of partially raising /a/. In both harmony types, the dorsal consonant 
/ɡ/ resists lenition by overpowering the strongest vowels in the inventory: /a/ in the case of chain-
shifting harmony, and /e/ and /o/ in the case of saltatory harmony. 
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 Chain-Shifting Harmony Saltatory Harmony 
Segment Blending Strength Constriction Degree  Blending Strength Constriction Degree  

/i/ 11.44 3.84 26.39 3.90 
/u/ 11.49 3.84 26.39 3.90 
/e/ 1.02 7.80 343.47 8.10 
/o/ 1.03 7.80 343.47 8.10 
/ɛ/  11.14 12.10 1.02 11.80 
/ɔ/ 11.14 12.10 1.02 11.80 
/a/ 22.20 16.10 12.76 16.08 
/ɡ/ 379.64 -2.00 3125.85 -2.00 

Table (4): Mean gestural parameter settings learned for chain-shifting and saltatory vowel 
height harmony 

In order to compare the relative learnability of chain-shifting versus saltatory height harmony 
when analyzed in the Gestural Harmony Model, we also examined the average number of training 
iterations necessary for the learners to converge upon each target pattern. The result of this 
comparison is shown in Figure (16).  

 
Figure (16): Mean number of training iterations required to learn chain-shifting and saltatory 

height harmony using the Gestural Gradual Learning Algorithm 

We observe that chain-shifting height harmony was learned more than five times faster than 
saltatory harmony. We interpret this result as an explanation for the attestation of chain-shifting 
height harmony and the lack of attestation of saltatory height harmony: the acquisition of saltatory 
height harmony requires much more data, suggesting that it is a more difficult pattern to learn. 

The reason why saltatory harmony is more time-consuming and therefore harder to learn lies 
in the more extreme strength values necessary for the Gestural Harmony Model to generate it. 
Figure (17) illustrates the average trajectories of segments’ gestural strengths throughout training 
on the two target harmony patterns; (a) depicts trajectories throughout the learning of chain-
shifting, while (b) depicts trajectories throughout the learning of saltation. Note the large 
differences in scale on both the X and Y axes. In both plots, gestural strength is plotted on a 
logarithmic scale. 
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(a) 

  
(b) 

Figure (17): (a) Trajectory of average learned gestural blending strengths during learning of 
chain-shifting height harmony; (b) trajectory of average learned gestural blending strengths 

during learning of saltatory height harmony 

These plots show clearly that the blending strength settings for all segments in the learner’s 
inventory take a much longer time to acquire for the saltatory height harmony than for the chain-
shifting height harmony. We believe two major factors to be at play here. First, the more extreme 
strengths necessary to generate saltatory harmony, due to the number of overpowering relations 
that must exist between different segments in the inventory, require more correct updates to each 
gesture’s blending strength parameter to reach their correct values from their initial values. Recall 
that all segments are initialized with a gestural blending strength between 1 and 20. With the 
Gestural Gradual Learning Algorithm’s linear parameter update rule, it will simply take more 
updates for the learner to reach a blending strength value of ~3,125 for /ɡ/ in the saltatory height 
harmony pattern than a value of ~380 for /ɡ/ in the chain-shifting height harmony pattern. 

Note, however, that even less extreme blending strength values take longer to acquire for 
saltatory harmony learners than for chain-shifting harmony learners. Learners of chain-shifting 
harmony converge upon values of ~11.5 for the high vowels /i/ and /u/, and they do so on average 
within 180,000 training iterations. By comparison, learners of saltatory harmony converge upon a 
similar value of ~12.5 for the low vowel /a/, but take much longer to do so. This is because learning 
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strength ratios involving more extreme strength values involves more incorrect updates to 
gestures’ blending strength parameters, ultimately necessitating more total updates.  

In our example learning trial depicted in Figure (14), for instance, the learner blends an /a/ of 
strength 10 with an /i/ of strength 2, resulting in a degree of raising of /a/ that is not sufficient to 
match the teacher’s production of one-step raising. As a result, the learner updates the strengths of 
these vowels, making /i/ stronger and /a/ weaker. However, this is an incorrect update for /a/; 
ultimately, the learner must actually increase the strength of /a/ to ~22 in order to correctly produce 
the teacher’s chain-shifting harmony pattern. It is the too-low strength of /i/ at this point in training 
that has led the learner to reduce the strength of /a/ after this trial. It is only after training has 
sufficiently increased the strength of /i/ (in the case of chain-shifting harmony, to twice the strength 
of /a/) that training items involving the blending of /i/ and /a/ will no longer incorrectly decrease 
the strength of /a/.  

Essentially, gestures that require greater strength values in order to produce a target harmony 
pattern slow down the acquisition of all lesser gestural strength settings. Because generating 
saltatory height harmony requires much more extreme strength values than chain-shifting 
harmony, it takes much longer for the strongest gestures to acquire their necessary strength values, 
leading to more trials with incorrect updates of lower-strength gestures along the way. The result 
is the slower acquisition of strength settings for all segments in the inventory.  

We claim that the difference in learning rate between these two types of height harmony when 
modeled using the Gestural Gradual Learning Algorithm predicts that the saltatory height harmony 
pattern should be more likely to be mislearned across generations, thereby becoming less 
typologically frequent. This learning bias against saltatory height harmony provides an explanation 
for why such a pattern is not attested, while the relative ease of learning chain-shifting height 
harmony explains its robust attestation. Therefore, while the Gestural Harmony Model generates 
both chain-shifting and saltatory height harmony, the relative learnability of these patterns 
correctly predicts typology. 

5. Learning Opaque Height Harmony in Alternative Frameworks 

As discussed in section 1, output-oriented, constraint-based frameworks such as Optimality 
Theory and Harmonic Grammar are unable to generate either chain shifts or saltations using the 
standard faithfulness constraints assumed within Correspondence Theory (McCarthy & Prince 
1995). However, by adopting alternative definitions of faithfulness constraints, it is possible to 
derive such patterns. In this section, we illustrate these approaches to analyzing the same chain-
shifting and saltatory height harmonies modeled in section 4. We also show the results of several 
sets of learning simulations and compare them to the results of our learning simulations using the 
Gestural Gradual Learning Algorithm. We show that while the Gestural Gradual Learning 
Algorithm predicts a learning bias in favor of chain-shifting height harmony and against saltatory 
height harmony, learning models based within featural phonology show no such bias.  

5.1. Chain Shifts and Saltations in Constraint-Based Grammars 

Kirchner (1996) characterizes the chain-shifting height harmony of Nzebi as a pattern in which 
an output is penalized only when a vowel changes two or more of its height features. For instance, 
underlying /ɛ/ may surface as [e], violating faithfulness to its [±ATR] specification, but not as [i], 
violating faithfulness to both its [±ATR] and [±high] specifications. A common method of 
modeling this sort of constraint cumulativity is via constraint ganging in Harmonic Grammar. In 
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constraint ganging, one candidate’s violation of two lower-weighted constraints results in a greater 
penalty than another candidate’s violation of a single higher-weighted constraint, allowing the two 
low-weighted constraints to ‘gang up’ on and overrule the higher-weighted constraint. However, 
Albright et al. (2008) and Farris-Trimble (2008) show that the ganging of IDENT constraints in 
Harmonic Grammar is unable to produce chain shifts. 

Łubowicz (2002) and McCarthy (2003) characterize a phonologically-derived environment 
effect, a class of patterns that includes saltation, as one in which an output is penalized only when 
it contains a structure that is both unfaithful and marked. Outputs may either surface as faithful 
with respect to some feature, or having fully resolved violation of a relevant markedness constraint. 
In our hypothetical saltatory two-step height harmony, underlying /e/ may surface faithfully as [e], 
despite not fully harmonizing with a high trigger vowel, while underlying /ɛ/ may not surface as 
[e]; it is both unfaithful to the input for [±ATR] and fails to fully harmonize with a high trigger. 
However, saltation cannot be generated in Harmonic Grammar via the ganging of a markedness 
and a faithfulness constraint, as observed by White (2013), Hayes & White (2015), and Smith (to 
appear). 

Constraint ganging in Harmonic Grammar, then, is unable to generate either chain shifts or 
saltations, both examples of underapplication derivational opacity. However, this does not mean 
that Harmonic Grammar is wholly unable to generate such patterns. Tesar (2013) and Magri 
(2018a, 2018b) show that whether a constraint-based phonological grammar can produce 
derivationally opaque chain shifts and saltations depends not on constraint interaction but rather 
on properties of the grammar’s individual faithfulness constraints.  

Constraints from the IDENT family as defined in Correspondence Theory assign violations 
linearly: each feature change between input and output incurs one IDENT violation. Therefore, any 
input-output mapping involving multiple feature changes incurs all of the violations incurred by 
more faithful mappings involving a single feature change. Tesar (2013) and Magri (2018b, 2018a) 
show that to generate a chain shift, what is needed is a faithfulness constraint that assigns more 
violations to a more unfaithful mapping than it does to two somewhat unfaithful mappings 
combined. In the case of vowel raising harmony, for instance, there must be a faithfulness 
constraint that penalizes two-step raising of /ɛ/ → [i] more greatly than the one-step mappings of 
/ɛ/ → [e] and /e/ → [i] combined. The inequality in (9), the complement of Magri’s Faithfulness 
Idempotency Condition, provides the violation profile necessary for a faithfulness constraint ℂ to 
be able to generate chain-shifting height harmony, where ℂ(mapping) indicates the number of 
violations that ℂ assigns to that mapping. 

(9) Constraint violation profile necessary to generate chain-shifting vowel raising 
 

ℂ(/ɛ/→[i]) > ℂ(/ɛ/→[e]) + ℂ(/e/→[i]) 

Conversely, in saltatory height harmony, input-output mappings involving two-step raising 
such as /ɛ/ → [i] surface while mappings involving one-step raising such as /ɛ/ → [e] or /e/ → [i] 
do not. Therefore, there must be a faithfulness constraint that assigns fewer violations to the less 
faithful mapping than to both of the more faithful mappings combined. The inequality in (10), the 
complement of Magri’s Faithfulness Output-Drivenness Condition, provides the violation profile 
necessary for a faithfulness constraint 𝕊 to be able to generate a saltation by which /ɛ/ → [i] while 
/e/ → [e]. 
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(10) Constraint violation profile necessary to generate saltatory vowel raising 
 

𝕊(/ɛ/→[i]) < 𝕊(/ɛ /→[e]) + 𝕊(/e/→[i]) 

Tesar (2013) and Magri (2018a, 2018b) show that the typical versions of faithfulness 
constraints IDENT, MAX, and DEP assumed within Correspondence Theory do not meet the 
violation profile conditions in (9) and (10) above under most circumstances, echoing an earlier 
proposal by Moreton (2004). As a result, they are both output-driven and idempotent (i.e., 
incapable of generating either chain shifts or saltations). However, other types of faithfulness 
constraints have been proposed that do meet these conditions and therefore can generate such 
derivationally opaque patterns; these are the subjects of sections 5.2 and 5.3. 

5.2. Scalar and Categorical Faithfulness 

One method of deriving both chain-shifting and saltatory phonological patterns in a constraint-
based grammar is to adopt feature scales, as proposed by Gnanadesikan (1997). Under this 
approach, specific feature values are represented by positions along these scales. For instance, the 
features for voicing, nasality, and sonority are reconceptualized as the Inherent Voicing scale, with 
values Voiceless Obstruent = 1, Voiced Obstruent = 2, and Sonorant = 3. Gnanadesikan also 
proposed a ternary Vowel Height scale, though she acknowledges that this scale may need to admit 
four or more values in order to sufficiently represent languages with greater numbers of vowel 
heights. For Nzebi’s four-height vowel inventory, we expand Gnanadesikan’s Vowel Height scale 
such that it comprises the values High = 1, High-Mid = 2, Low-Mid = 3, and Low = 4. Chain-
shifting height harmony in this framework is modeled as a one-step shift along this Vowel Height 
scale, while saltatory height harmony is modeled as a two-step shift along the scale. 

Crucial to this framework is the use of both scalar and categorical markedness and faithfulness 
constraints. Gnanadesikan (1997) proposes that faithfulness constraints from the IDENT family 
come in two versions: one, IDENT(X), that penalizes any changes in a segment’s feature 
specification, and another, IDENT-ADJ(ACENT)(X) that penalizes changes of more than one step 
along a feature scale. These IDENT constraints are defined in (11). 

(11) IDENT constraints in Ternary Feature Scales theory (Gnanadesikan 1997, p. 78) 

a. IDENT(X): Given an input segment A and its correspondent output segment B, then A 
and B have identical values on the scale X. 

b. IDENT-ADJACENT(X): Given an input segment A and its correspondent output segment 
B, then A and B must have related values on scale X, where the defined relations are 
identity and adjacency. 

Because we have expanded the Vowel Height scale to include four values rather than three, we 
also assume a third constraint, IDENT-PART(IAL)(X), that penalizes changes of more than two steps 
along a feature scale. These faithfulness constraints are in a stringency relationship: IDENT(X) is 
stricter than IDENT-ADJ(X), which is stricter than IDENT-PART(X). As such, they are not equivalent 
to the IDENT constraints of Correspondence Theory, which collectively assign one violation per 
feature change between input and output and generate only derivationally transparent patterns. The 
IDENT constraints in (11), made possible by the adoption of features scales, are able to generate 
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derivationally opaque phonological patterns. The high weighting of IDENT-ADJ(Height) is 
responsible for chain-shifting height harmony, while the high weighting of IDENT(Height) is 
largely responsible for saltatory height harmony.6 

We first demonstrate how IDENT-ADJ(Height) makes it possible to generate chain-shifting 
height harmony. This constraint is satisfied not only by candidates that realize an input vowel’s 
height faithfully in the output, but also by those candidates exhibiting single-step vowel raising; 
only more drastic shifts along the Vowel Height scale incur a violation. IDENT-ADJ(Height) 
therefore conforms to the violation profile in (9) that is necessary for a faithfulness constraint to 
be able to generate a chain shift, as shown in the inequality in (12). 

(12) IDENT-ADJ(Height) is capable of deriving chain-shifting height harmony 

IDENT-ADJ(Ht.)(/ɛ/→[i])  >  IDENT-ADJ(Ht.)(/ɛ/→[e])  +  IDENT-ADJ(Ht.)(/e/→[i]) 
1  0  0 

The ability of IDENT-ADJ(Height) to generate a chain-shifting height harmony pattern is 
illustrated by the tableau in (13). In Gnanadesikan’s (1997) framework, harmony is driven by 
constraints from the ASSIM(ILATE) family, which are defined similarly to constraints from the 
AGREE family (Lombardi 1999; Baković 2000). Like IDENT, Gnanadesikan proposes that the 
constraint ASSIM comes in multiple versions: ASSIM(ILATE)(X) requires total agreement between 
two segments with respect to some feature, while ASSIM(ILATE)-ADJ(ACENT)(X) requires only that 
two segments have feature scale values that are at least adjacent on the feature scale. Again, we 
assume a third constraint, ASSIM(ILATE)-PART(IAL)(X), which requires that two segments have 
feature scale values that are no more than two positions away from one another on our quaternary 
scale of vowel height. In (13), the constraints ASSIM(Height), ASSIM-ADJ(Height), and ASSIM-
PART(Height) are all assigned a weight higher than that of IDENT(Height) in order to capture the 
fact that some amount of raising is preferable to full faithfulness to underlying vowel height. The 
constraint IDENT-ADJ(Height), on the other hand, is assigned the highest weight in order to prevent 
feature scale changes of more than one.  

 
6 For two-step raising harmony in a four-height vowel system, IDENT-PART(Height) is also necessary in order to 
prevent three-step mapping of /a/ → [i]; however, we will not discuss this portion of the process here. 
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(13) IDENT-ADJ(Height) penalizes two- and three-step raising, not one-step raising 

Input: /a-i/ IDENT-
ADJ(Ht.) 

w=4 

ASSIM-
PART(Ht.) 

w=2 

ASSIM-
ADJ(Ht.) 

w=2 

ASSIM(Ht.) 
w=2 

IDENT(Ht.) 
w=1 

IDENT-
PART(Ht.) 

w=1	

𝓗	

 a. [a-i]  -1 -1 -1   -6 
☞ b. [ɛ-i]   -1 -1 -1  -5 
 c. [e-i] -1   -1 -1  -7 
 d. [i-i] -1    -1 -1 -6 
Input: /ɛ-i/ IDENT-

ADJ(Ht.) 
w=4 

ASSIM-
PART(Ht.) 

w=2 

ASSIM-
ADJ(Ht.) 

w=2 

ASSIM(Ht.) 
w=2 

IDENT(Ht.) 
w=1 

IDENT-
PART(Ht.) 

w=1	

𝓗 

 e. [ɛ-i]   -1 -1   -4 
☞ f. [e-i]    -1 -1  -3 
 g. [i-i] -1    -1  -5 
Input: /e-i/ IDENT-

ADJ(Ht.) 
w=3 

ASSIM-
PART(Ht.) 

w=2 

ASSIM-
ADJ(Ht.) 

w=2 

ASSIM(Ht.) 
w=2 

IDENT(Ht.) 
w=1 

IDENT-
PART(Ht.) 

w=1	

𝓗 

 h. [e-i]    -1   -2 
☞ i. [i-i]     -1  -1 

For input /a-i/ in (13), candidate (a) [a-i] is faithful to the input, with the first vowel having not 
undergone any raising. As a result, it violates all of the ASSIM constraints. Winning candidate (b) 
[ɛ-i] undergoes one-step raising, eliminating a violation of ASSIM-PART. Because this one-step 
raising is penalized only by low-weighted IDENT(Height) and not by high-weighted IDENT-
ADJ(Height), this candidate is chosen as the winner. Candidates (c) [e-i] and (d) [i-i] both involve 
multi-step raising, incurring fewer violations of the ASSIM constraints but also fatal violations of 
IDENT-ADJ(Height). These constraints work similarly for inputs /ɛ-i/ and /e-i/. For input /ɛ-i/, 
faithful candidate (e) [ɛ-i] and one-step raising candidate (f) [e-i] both satisfy high-weighted 
IDENT-ADJ(Height); however, candidate (f) [e-i] eliminates a violation of ASSIM-ADJ(Height) and 
is therefore selected as the winner. Candidate (g) [i-i] undergoes full raising, satisfying all ASSIM 
constraints at the expense of fatally violating IDENT-ADJ(Height). For input /e-i/, neither candidate 
violates IDENT-ADJ(Height). As a result, it falls to the ASSIM constraints to determine the winner. 
While faithful candidate (h) [e-i] violates ASSIM(Height), in candidate (i) [i-i] both vowels 
harmonize fully for height and this candidate is chosen as the winner. 

Feature scale theory also makes it possible to generate saltatory height harmony. Rather than 
individual faithfulness constraints penalizing changes to each of the vowel height features [±high], 
[±low], and [±ATR], the single constraint IDENT(Height) crucially penalizes a change of any 
magnitude along the Vowel Height scale equally. This means that a mapping such as /ɛ/ → [i], 
involving two-step raising, incurs the same penalty from IDENT(Height) as one-step raising 
mappings /ɛ/ → [e] and /e/ → [i]. Its violation profile therefore fits the violation profile inequality 
necessary to generate saltation in (10) above, as shown in (14). 
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(14) IDENT(Height) is capable of deriving saltatory height harmony 

IDENT(Height)(/ɛ/→[i])  <  IDENT(Height)(/ɛ/→[e])  +  IDENT(Height)(/e/→[i]) 
1  1  1 

With IDENT(Height) weighted high, the more unfaithful mapping /ɛ/ → [i] incurs no more 
violation than the somewhat unfaithful mappings /ɛ/ → [e] and /e/ → [i]. However, the /ɛ/ → [i] 
mapping resolves all violations of the harmony-driving ASSIM constraints. Therefore, the more 
drastic /ɛ/ → [i] mapping is favored, as shown by the tableau in (15). In order to focus on the 
portion of the two-step raising process that results in saltation, we do not include an account of the 
two-step raising of /a/ → [ɛ] here. 

(15) IDENT(Height) does not favor one-step raising over two-step raising 

Input: /ɛ-i/ IDENT(Height) 
w=3 

ASSIM-ADJ(Height) 
w=3 

ASSIM(Height) 
w=2 

IDENT-ADJ(Height) 
w=1 

𝓗	

☞ a. [i-i] -1   -1 -4 
 b. [e-i] -1  -1  -5 
 c. [ɛ-i]  -1 -1  -5 
Input: /e-i/ IDENT(Height) 

w=3 
ASSIM-ADJ(Height) 

w=3 
ASSIM(Height) 

w=2 
IDENT-ADJ(Height) 

w=1 
𝓗 

 d. [i-i] -1    -3 
☞ e. [e-i]   -1  -2 

In (15) with input /ɛ-i/, IDENT(Height) is violated equally by the two-step raising candidate (a) 
[i-i] and the one-step raising candidate (b) [e-i]. Therefore, whether /ɛ/ raises fully to [i] or only to 
[e] is dependent on the relative weights of ASSIM(Height) and IDENT-ADJ(Height). Because 
ASSIM(Height) is weighted higher, candidate (a) [i-i] is the winner. The faithful candidate (c) [ɛ-i] 
satisfies both IDENT constraints at the expense of violating both ASSIM constraints. With input /e-
i/, no amount of raising is favored, as candidate (d) [i-i] violates high-weighted IDENT(Height) 
while faithful candidate (e) [e-i] violates only lower-weighted ASSIM(Height). 

In this section, we have shown that the scalar and categorical faithfulness constraints of Feature 
Scales theory are able to generate both chain-shifting and saltatory harmony. Scalar faithfulness 
constraints generate chain shifts by assigning violations based on the magnitude of a feature 
change along a scale and not based on changes to individual binary features. Categorical 
faithfulness constraints generate saltations by assigning equal violations regardless of the 
magnitude of a feature change along a scale. 

5.3. Distinct Faithfulness 

Another approach to generating derivationally opaque phonological patterns involves the use 
of distinct faithfulness constraints for each input-output mapping using constraints from the *MAP 
family (Zuraw 2007). These *MAP constraints penalize specific input-output mappings rather than 
featural mismatches between input-output correspondents. White (2013) provides the definition in 
(16) for this family of constraints. 
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(16) *MAP constraint definition (White 2013, p. 44) 
 
*MAP(X,Y): Assign a violation when a segment that is a member of class X is in 
correspondence with a segment of class Y. 

For example, the constraint *MAP([+low],[+high]) assigns a single violation to a candidate in 
which an underlying /a/ corresponds with a surface [i] or [u], and the constraint 
*MAP([+ATR,-high],[+high]) assigns a single violation to an underlying /e/ or /o/ that surfaces as 
[i] or [u]. Because there is assumed to be a distinct *MAP constraint for every input-output 
mapping, there is a *MAP constraint that penalizes a mapping involving two or more feature 
changes, but not one involving a single feature change. This constraint can generate a chain shift. 
Conversely, there is also a *MAP constraint that penalizes a mapping involving a single feature 
change, but not one involving two or more feature changes; this constraint can generate a saltation. 

In the case of height harmony in a language with a four-height vowel inventory, we assume 
the *MAP constraints in (17). We assume a *MAP constraint penalizing input-output mappings 
between each vowel height, using the following abbreviations for conciseness: /a/ for [+low], /ɛ/ 
for [-ATR, -low], /e/ for [+ATR, -high], and /i/ for [+high]. 

(17) *MAP constraints penalizing changes in vowel height  

a. *MAP(e,i): Assign a violation when a [+ATR, -high] segment is in correspondence with 
a [+high] segment. 

b. *MAP(ɛ,e): Assign a violation when a [-ATR, -low] segment is in correspondence with 
a [+ATR, -high] segment. 

c. *MAP(a,ɛ): Assign a violation when a [+low] segment is in correspondence with a 
[-ATR, -low] segment. 

d. *MAP(ɛ,i): Assign a violation when a [-ATR, -low] segment is in correspondence with 
a [+high] segment. 

e. *MAP(a,e): Assign a violation when a [+low] segment is in correspondence with a 
[+ATR, -high] segment. 

f. *MAP(a,i): Assign a violation when a [+low] segment is in correspondence with a 
[+high] segment. 

Recall that in order to produce a chain shift in which /ɛ/ → [e]  and /e/ → [i], there must be a 
constraint that assigns a greater number of violations to the mapping /ɛ/ → [i] than it does to the 
mappings /ɛ/ → [e] and /e/ → [i] combined, following (9) above. The constraint *MAP(ɛ→i) fits 
this violation profile condition, as shown in (18): it assigns one violation to the two-step raising 
mapping /ɛ/ → [i], and no violations to any other mapping. 

(18) *MAP(ɛ,i) is capable of deriving chain-shifting height harmony 

*MAP(ɛ,i)(/ɛ/→[i])  >  *MAP(ɛ,i)(/ɛ/→[e])  +  *MAP(ɛ,i)(/e/→[i]) 
1  0  0 
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The ability of this constraint to generate chain-shifting height harmony is demonstrated by the 
tableau in (19). To drive harmony, we utilize constraints we simply call HARMONY(high), 
HARMONY(ATR), and HARMONY(low); whether these constraints motivate harmony via feature 
agreement or feature spreading is unimportant. Several crucial constraint weightings are at play in 
the generation of chain-shifting height harmony. First, to drive one-step raising, each of the 
HARMONY constraints must outweigh one of the set of *MAP constraints penalizing one-step vowel 
raising: HARMONY(high) must outweigh *MAP(e,i), HARMONY(ATR) must outweigh *MAP(ɛ,e), 
and HARMONY(low) must outweigh *MAP(a,ɛ). In addition, multistep vowel raising is prevented 
by assigning high weights to all of the *MAP constraints that penalize two- or three-step raising 
(*MAP(a,e), *MAP(a,i), and *MAP(ɛ,i)). To prevent two-step raising of /ɛ/ → [i] and /ɔ/ → [u], 
*MAP(ɛ,i) must be provided a weight higher than the combined weights of harmony-driving 
HARMONY(high) and one-step raising-penalizing *MAP(ɛ,e). Similarly, to prevent two-step raising 
of /a/ → [e], *MAP(a,e) must have a weight higher than the combined weights of HARMONY(ATR) 
and *MAP(a,ɛ). Finally, to prevent full raising of /a/ → [i], the constraint *MAP(a,i) must have a 
greater weight than the combined weights of three lower-weighted constraints: harmony-driving 
HARMONIZE(high) and HARMONIZE(ATR) and two-step raising-penalizing *MAP(a,ɛ). 

(19) *MAP(a,i), *MAP(a,e), and *MAP(ɛ,i) penalize multi-step vowel raising 

Input: /a-i/ *MAP 
(a,i) 
w=6 

*MAP 
(a,e) 
w=4 

*MAP 
(ɛ,i) 
w=4 

HARMONY 
(high) 
w=2 

HARMONY 
(ATR) 
w=2 

HARMONY 
(low) 
w=2 

*MAP 
(e,i) 
w=1 

*MAP 
(ɛ,e) 
w=1 

*MAP 
(a,ɛ) 
w=1 

𝓗 

 a. [i-i] -1         -6 
 b. [e-i]  -1  -1      -6 

☞ c. [ɛ-i]    -1 -1    -1 -5 
 d.  [a-i]    -1 -1 -1    -6 

Input: /ɛ-i/ *MAP 
(a,i) 
w=6 

*MAP 
(a,e) 
w=4 

*MAP 
(ɛ,i) 
w=4 

HARMONY 
(high) 
w=2 

HARMONY 
(ATR) 
w=2 

HARMONY 
(low) 
w=2 

*MAP 
(e,i) 
w=1 

*MAP 
(ɛ,e) 
w=1 

*MAP 
(a,ɛ) 
w=1 

𝓗 

 e. [i-i]   -1       -4 
☞ f. [e-i]    -1    -1  -3 
 g. [ɛ-i]    -1 -1     -4 
Input: /e-i/ *MAP 

(a,i) 
w=6 

*MAP 
(a,e) 
w=4 

*MAP 
(ɛ,i) 
w=4 

HARMONY 
(high) 
w=2 

HARMONY 
(ATR) 
w=2 

HARMONY 
(low) 
w=2 

*MAP 
(e,i) 
w=1 

*MAP 
(ɛ,e) 
w=1 

*MAP 
(a,ɛ) 
w=1 

𝓗 

☞ h. [i-i]       -1   -1  
 i. [e-i]    -1      -2 

In (19) with input /a-i/, multistep raising candidates (a) [i-i] and (b) [e-i] are each ruled out due 
to violation of a high-weighted *MAP constraint. Winning candidate (c) [ɛ-i] exhibits one-step 
raising, violating only low-weighted *MAP(a,ɛ) in order to satisfy HARMONY(low). Finally, 
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faithful candidate (d) [a-i] satisfies all of the *MAP constraints, but violates all of the HARMONY 
constraints. With input /ɛ-i/, two-step raising is again prevented due to the high weighting of 
*MAP(ɛ,i), which is violated by candidate (e) [i-i]. Winning candidate (f) [e-i] violates low-
weighted *MAP(ɛ,e) in order to satisfy HARMONY(ATR), while faithful candidate (g) [ɛ-i] violates 
HARMONY(high) and HARMONY(ATR). With input /e-i/, candidate (h) [i-i] is able to satisfy all 
HARMONY constraints with only one-step raising, violating only low-weighted *MAP(e,i), while 
faithful candidate (i) [e-i] violates HARMONY(high). 

There is also a *MAP constraint with the violation profile necessary to generate two-step, 
saltatory height harmony. In order to produce the saltatory pattern in which /ɛ/ → [i] and /e/ → 
[e], there must be a constraint that assigns fewer violations to the more unfaithful mapping /ɛ/ → 
[i] than to the mappings /ɛ/ → [e] and /e/ → [i] combined. The constraint *MAP(e,i) fits this 
violation profile, as shown in (20). 

(20) *MAP(e,i) is capable of deriving saltatory height harmony 

*MAP(e,i)(/ɛ/→[i])  <  *MAP(e,i)(/ɛ/→[e])  +  *MAP(e,i)(/e/→[i]) 
0  0  1 

We illustrate this constraint’s ability to generate saltatory height harmony in the tableau in 
(21). In order to enforce the faithful mapping of /e/ → [e], the constraint *MAP(e,i), which 
penalizes one-step raising of high-mid vowels to high, must be provided a higher weight than the 
harmony-driving markedness constraint HARMONY(high). In order to drive the saltatory two-step 
raising of /ɛ/ → [i] and /ɔ/ → [u], the constraint *MAP(ɛ,i) must be provided a weight lower than 
the combined weights of HARMONY(high) and HARMONY(ATR). There is no crucial weighting of 
one-step raising-penalizing *MAP(ɛ,e); therefore, we provide it with a low weight here. Again, in 
order to focus only on the portion of the two-step raising process that results in saltation, we do 
not include an account of the two-step raising of /a/ → [e]. 

(21) *MAP(e,i) penalizes one-step raising, not two-step raising 

Input: /ɛ-i/ *MAP(e,i) 
w=2 

HARMONY 
(high) 
w=1 

HARMONY 
(ATR) 
w=1 

*MAP(ɛ,e) 
w=1 

*MAP(ɛ,i) 
w=1 

 

𝓗 

☞ a. [i-i]     -1 -1 
 b. [e-i]  -1  -1  -2 
 c. [ɛ-i]  -1 -1   -2 

Input: /e-i/ *MAP(e,i) 
w=2 

HARMONY 
(high) 
w=1 

HARMONY 
(ATR) 

W=1 

*MAP(ɛ,e) 
w=1 

*MAP(ɛ,i) 
w=1 

 

𝓗 

 d. [i-i] -1     -2 
☞ e. [e-i]  -1    -1 

In (21) with input /ɛ-i/, winning candidate (a) [i-i] exhibits full raising, satisfies both HARMONY 
constraints while violating only low-weighted *MAP(ɛ,i). The more-faithful candidate (b) [e-i], 
meanwhile, violates HARMONY(high) as well as *MAP(ɛ,e). The fully-faithful candidate (c) [ɛ-i] 
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violates no *MAP constraints but both HARMONY constraints. By contrast, with input /e-i/ the full 
raising candidate (d) [i-i] is not selected as the winner due to its violation of high-weighted 
*MAP(e,i). Winning candidate (e) [e-i] satisfies this constraint and violates only lower-weighted 
HARMONY(high). 

Both the scalar and categorical faithfulness approach and the distinct faithfulness approach, 
then, are capable of deriving both chain-shifting and saltatory height harmony. In the following 
section, we test the learnability of chain-shifting and saltatory height harmony within frameworks 
assuming either scalar features or distinct faithfulness constraints and compare the results of those 
learning simulations to those of the Gestural Harmony Model. 

5.4. Learning Simulations 

5.4.1. Setup 

To determine the relative learnability of chain-shifting and saltatory height harmony in the 
frameworks described in sections 5.2 and 5.3, we used the MaxEnt Generational Stability Model 
(O’Hara 2021). This model is an iterated agent-based learning model based on those developed by 
Kirby & Hurford (2002), Griffiths & Kalish (2007), Culbertson & Kirby (2016), and others. The 
use of such models has been extended to phonological acquisition by Pater & Moreton (2012), 
Staubs (2014), Hughto (2020), and others.  

The MaxEnt Generational Stability Model simulates the learning and transmission of 
phonological patterns across multiple generations of learners tasked with acquiring a Maximum 
Entropy (henceforth MaxEnt) Harmonic Grammar (Goldwater & Johnson 2003; Jäger 2007) using 
the Perceptron learning algorithm (Rosenblatt 1958; Boersma & Pater 2016). In one generation, 
one model agent, the learner, is exposed to a large, but limited, number of forms produced by the 
grammar of another model agent, the teacher. For each learning trial, an input is randomly sampled, 
and the learner then samples an output form for that input given its grammar’s current constraint 
weights. If the learner makes an error, i.e. selects an output candidate different from the one 
selected by the teacher, the learner’s grammar is updated, increasing the weights of constraints 
violated by the learner and decreasing the weights of constraints violated by the teacher. In the 
next generation, the learner becomes the teacher, and its grammar produces forms to which the 
next generation’s learner is exposed. This process is repeated for a number of generations. 

In this learning model, patterns that are learned more quickly and accurately are more likely to 
remain stable across generations, while those that are learned less quickly and accurately are more 
likely to change. At the end of the last generation, a learning simulation is classified according to 
the pattern produced by the grammar learned by the final generation.7 The stability of a pattern 
can be quantified by examining the percentage of simulations in which the last generation’s 
grammar is classified as the same type of pattern as the original teacher’s pattern. The stability of 
a pattern across generations serves as a metric for the learnability of that pattern, with more stable 
patterns being learned more quickly and easily (O’Hara 2021). 

Using the MaxEnt Generational Stability Model, we ran two sets of simulations of the learning 
of both chain-shifting and saltatory height harmony: one using the scalar and categorical 

 
7 Because MaxEnt is a probabilistic model of grammar, no learner ever learns a categorical target pattern. Here, we 
classify a MaxEnt grammar according to the categorical pattern generated by the set of constraints and weights in its 
non-probabilistic Harmonic Grammar equivalent.  
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faithfulness constraints of Feature Scales theory, and one using distinct *MAP faithfulness 
constraints. The full list of constraints used is provided in Table (5). 

 Markedness Constraints Faithfulness Constraints 
Scalar/Categorical 
Faithfulness 

ASSIM-IDENT(Height) 
ASSIM-ADJ(Height) 
ASSIM-PART(Height) 

IDENT(Height) 
IDENT-ADJ(Height) 
IDENT-PART(Height) 

Distinct Faithfulness HARMONIZE(high) 
HARMONIZE(ATR) 
HARMONIZE(low) 

*MAP(e,i) 
*MAP(ɛ,e) 
*MAP(a,ɛ) 
*MAP(ɛ,i) 
*MAP(a,e) 
*MAP(a,i) 

Table (5): Constraint sets used in MaxEnt Generational Stability Model simulations 

In our scalar/categorical faithfulness simulations, each learner was initialized with all 
harmony-driving markedness constraints (those from the ASSIM family) weighted at 50, and all 
faithfulness constraints (those from the IDENT family) weighted at 1. This initial weighting of 
markedness constraints above faithfulness constraints has precedence in the field of phonological 
acquisition modeling, having been shown to ensure learning of restrictive patterns (Tesar & 
Smolensky 1998) and to better match stages of child language acquisition (Gnanadesikan 2004; 
Jesney & Tessier 2011).  

The initial constraint weighting conditions for our simulations utilizing *MAP constraints are 
more involved. White (2013) argues for a substantive bias in the relative weights of *MAP 
constraints during learning that is consistent with the P-Map (Steriade 2008), a speaker’s 
knowledge of the perceptual similarities between all pairs of segments. Such a bias makes it more 
difficult to learn saltation and other patterns that favor less faithful mappings over more faithful 
ones. White implements the P-Map bias using the MaxEnt Grammar Tool8 through a persistent 
Gaussian prior on the weights of *MAP constraints based on the P-Map. This prior term leads the 
MaxEnt Grammar Tool to prefer specific weightings of constraints that are similar to those 
specified by the user. Here, we make use of gradual learning simulations rather than the MaxEnt 
Grammar Tool’s batch learning simulations, and therefore we bias the constraint weights via initial 
constraint weightings instead of a persistent prior term. Gradual learning algorithms with non-
persistent biases have been argued to better parallel natural language learning and to perform better 
than batch learners with persistent priors on matching some human behavior (O’Hara 2020). 

In our simulations, we approximated the P-Map bias by providing initial weightings to our 
*MAP constraints as follows. The constraint *MAP(a,i) penalizing changes to three vowel height 
features was assigned three times the initial weight of those *MAP constraints penalizing changes 
to only one height feature (*MAP(a,ɛ), *MAP(ɛ,e), and *MAP(e,i)), and those *MAP constraints 
penalizing changes to two height features (*MAP(a,e) and *MAP(ɛ,i)) were assigned twice the 
initial weight of the one-step penalizing *MAP constraints. These linear weight ratios were chosen 
to remove any potential bias favoring either chain-shifts or saltations. 

Our distinct faithfulness simulations were also divided into three subcategories based on 
different initial relative weightings of the markedness and faithfulness constraints. Because 

 
8 Available at: https://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/ 
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constraints weight hierarchies for *MAP constraints have not been previously implemented in 
online learning simulations, we ran simulations with multiple initial weightings. In one, harmony-
driving markedness constraints were provided weights much greater than all *MAP faithfulness 
constraints (abbreviated M > F); this is comparable to the initial weighting condition used for our 
scalar and categorical faithfulness simulations, as well as previous work on phonological 
acquisition. In another, markedness constraints were provided weights equal to the lowest-
weighted *MAP constraints (abbreviated M ≈ F). In the third initial weighting condition, 
markedness constraints were provided weights much lower than all *MAP constraints (abbreviated 
M < F). This condition is most similar to the batch learner proposed by White (2013), in which 
markedness constraints have a prior term biasing their weights toward zero and *MAP constraints 
have a prior term biasing their weights to be consistent with the P-Map. The exact initial 
weightings of constraints in each of these conditions are provided in Table (6).  

Condition Markedness Constraints Faithfulness Constraints 
M > F HARMONIZE(high) 50 

HARMONIZE(ATR) 50 
HARMONIZE(low) 50 

*MAP(e,i) 5 
*MAP(ɛ,e) 5 
*MAP(a,ɛ) 5 
*MAP(ɛ,i) 10 
*MAP(a,e) 10 
*MAP(a,i) 15 

M ≈ F HARMONIZE(high) 50 
HARMONIZE(ATR) 50 
HARMONIZE(low) 50 

*MAP(e,i) 50 
*MAP(ɛ,e) 50 
*MAP(a,ɛ) 50 
*MAP(ɛ,i) 100 
*MAP(a,e) 100 
*MAP(a,i) 150 

M < F HARMONIZE(high) 1 
HARMONIZE(ATR) 1 
HARMONIZE(low) 1 

*MAP(e,i) 17 
*MAP(ɛ,e) 17 
*MAP(a,ɛ) 17 
*MAP(ɛ,i) 34 
*MAP(a,e) 34 
*MAP(a,i) 51 

Table (6): Initial constraint weightings for simulations utilizing distinct faithfulness constraints 

In most of our simulations, at each generation a learner was exposed to 2,000 forms produced 
by its teacher (in all but the first generation, the learner from the previous generation). The only 
exception was the set of simulations utilizing *MAP constraints and the M > F initial constraint 
weighting condition. Under this initial condition, both chain-shifting and saltatory height harmony 
are learned significantly slower. To account for this, for these simulations we increased the number 
of forms each learner was exposed to per generation from 2,000 to 3,600. All simulations ran for 
20 generations with a learning rate constant of 0.05. For each target height harmony pattern (chain-
shifting or saltatory), constraint set (scalar/categorical faithfulness or distinct faithfulness), and 
initial constraint weighting (markedness over faithfulness for scalar/categorical; M > F, M ≈ F, 
and M < F for distinct) we ran 100 simulations. 
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5.4.2. Results and Discussion 

Our results indicate that across all of our learning simulations, saltatory height harmony is 
predicted to be either more stable than or as stable as chain-shifting height harmony across 
generations of phonological acquisition, and therefore at least as typologically frequent as chain-
shifting height harmony. This is in direct contrast with both the typological facts and the results of 
our simulations utilizing the Gestural Gradual Learning Algorithm reported in section 4.2. 

The stability of each height harmony pattern in the simulations utilizing the scalar and 
categorical faithfulness constraints is reported in Table (7). 

Target Pattern Stability Across Generations 
Chain Shift 67% 
Saltation 93% 

Table (7): Rates of stability for chain-shifting and saltatory height harmony using scalar and 
categorical faithfulness constraints (IDENT, IDENT-ADJACENT, and IDENT-PARTIAL) 

With this set of constraints, the saltation pattern is more stable than the chain-shifting pattern, 
and therefore easier to learn than the chain-shifting pattern. From these results, we would expect 
that saltatory height harmony would be better represented crosslinguistically than chain-shifting 
height harmony, contra the typological evidence.  

Figure (Figure) shows the results of our simulations utilizing distinct faithfulness constraints. 
In each of the three initial weighting conditions, the chain shift pattern (shown in white) is less 
stable than the saltatory pattern (shown in gray). 

 
Figure (8): Rates of stability for chain-shifting and saltatory height harmony using distinct 

faithfulness constraints (*MAP family) with three different initial constraint weighting conditions 

Together, these three sets of simulations suggest that learners of a grammar that includes 
faithfulness constraints from the *MAP family are not biased in favor of chain-shifting height 
harmony over saltatory height harmony. This finding is consistent across a variety of possible 
initial weightings, suggesting that this effect is not the result of any particular initial weighting 
condition. In fact, one of these initial weighting conditions appears to substantially favor saltatory 
over chain-shifting height harmony. 

Across both of the examined featural approaches to generating derivationally opaque height 
harmony (scalar and categorical faithfulness and distinct faithfulness), our simulations showed no 
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learning bias in favor of attested chain-shifting harmony and against unattested saltatory harmony. 
We argue that this result arises because the saltatory harmony pattern makes greater use of 
consistent constraints. Constraint consistency is a measure of how often across learning trials a 
constraint is violated by intended winner candidates (as determined by the teacher’s grammar), 
candidates chosen by the learner in error, or a combination of the two. 

The consistency of several abstract constraints is illustrated in the sample comparative tableau 
in (22). Each row compares violations of the intended winning candidate to violations of some 
other candidate that the learner could erroneously choose as the winner. Each cell shows the 
difference vector between violations of the intended winning candidate and the learner’s erroneous 
winning candidate. If the difference vector for a constraint is positive, that constraint is winner-
favoring, indicated by a W. If the difference vector is negative, the constraint is loser-favoring, 
indicated by an L. A zero indicates no difference in number of violations between the candidates. 

(22) Sample comparative tableau illustrating constraint consistency 

 CON 1 CON 2 CON 3 
/input/ a.  [intended winner] ~ [error 1] 0 1W  -1L 
  b.  [intended winner] ~ [error 2] -1L 0 0 

 c.  [intended winner] ~ [error 3] -1L 1W 1W 

A consistent constraint is one that is either never winner-favoring or never loser-favoring. In 
(22), CONSTRAINT 1 is consistent as it is only loser-favoring or neutral, never winner-favoring. 
CONSTRAINT 2 is also consistent as it is only winner-favoring or neutral, never loser-favoring. 
However, CONSTRAINT 3 is inconsistent because one comparison between an intended winner and 
a learner’s erroneous winner is winner-favoring, while another is loser-favoring. 

Constraint consistency plays an important role in online learning via the Perceptron algorithm 
(Rosenblatt 1958; Boersma & Pater 2016) for constraint weight updates. The Perceptron algorithm 
updates a constraint’s weight whenever the learner makes an error by comparing the violations of 
that constraint by the teacher’s winning candidate and the learner’s erroneous winning candidate. 
If the constraint is violated more by the learner’s erroneous winning candidate (i.e., if it is loser-
favoring), the constraint’s weight is increased. However, if it is violated more by the teacher’s 
winning candidate (i.e., if it is winner-favoring), its weight is decreased. A maximally consistent 
constraint’s weight will only ever be updated in one direction, while for an inconsistent constraint 
some errors made by the learner during training will increase the constraint’s weight and others 
will decrease it, leading the weight to oscillate rather than monotonically increase or decrease. 
These inconsistent constraints ultimately update their weights more slowly than consistent 
constraints as different training items’ updates cancel each other out. 

A general finding across work on the learning of constraint-based grammars is that learners 
more easily learn patterns with high-weighted constraints that are consistent. Staubs (2014) and 
Stanton (2016) show that stress systems generated by consistent constraints are learned faster and 
are more typologically frequent. Moreton et al. (2017) show that patterns supported by more 
consistent constraints (which they call valid constraints) are learned more quickly in a MaxEnt 
framework with a conjunctive constraint schema, and O’Hara (2021) shows that consistency 
impacts the update speed of constraints in the MaxEnt Generational Stability model and is a major 
factor in determining which phonological patterns are more or less stable across generations of 
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learners. We claim that it is constraint consistency that leads to saltatory height harmony being 
more stable than chain-shifting harmony in some of our sets of simulations. 

In all of our simulations, the grammar that produces saltatory height harmony includes more 
consistent markedness constraints compared to the grammar that produces chain-shifting height 
harmony. We exemplify the difference in consistency using the HARMONY family of constraints 
used in our *MAP simulations in section 5.4.9 The consistency of each markedness constraint in 
our chain-shifting and saltatory height harmony patterns can be seen in the comparative tableaux 
below. We show only faithful candidates and those involving vowel raising; those candidates 
involving vowel lowering are harmonically bounded and therefore not seen as errors in training. 

The comparative tableau in (23) shows the consistency of the markedness constraints when 
chain-shifting height harmony is the learner’s target pattern. We see that only HARMONY(low) is 
consistent, as it is winner-favoring when comparing the mapping /a-i/ → [ɛ-i] with the mapping 
/a-i/ → [a-i], and neither winner- nor loser-favoring elsewhere. HARMONY(ATR) and 
HARMONY(high), by contrast, are both inconsistent. 

(23) HARMONY(ATR) is not consistent in chain-shifting height harmony   

 HARMONY(high) HARMONY(ATR) HARMONY(low) 
I. /a-i/ a.   [ɛ-i] ~ [a-i] 0 0 1W 
  b.   [ɛ-i] ~ [e-i] 0 -1L 0 

 c.   [ɛ-i] ~ [i-i] -1L -1L 0 
II.  /ɛ-i/  d.   [e-i] ~ [ɛ-i] 0 1W 0 
   e.   [e-i] ~ [i-i] -1L 0 0 
III. /e-i/ f.   [i-i] ~ [e-i] 1W 0 0 

On the other hand, with saltatory height harmony as the learner’s target pattern, 
HARMONY(ATR) is consistent, as shown in the comparative tableau in (24). None of the teacher’s 
winning candidates violate HARMONY(ATR), so it is always either winner-favoring or neutral. 
HARMONY(low) is equally consistent for both chain-shifting and saltatory height harmony, while 
HARMONY(high) is inconsistent for both patterns. 

(24) HARMONY(ATR) and HARMONY(low) are consistent in saltatory height harmony 

 HARMONY(high) HARMONY(ATR) HARMONY(low) 
I. /a-i/ a.   [e-i] ~ [a-i] 0 1W 1W 
  b.   [e-i] ~ [ɛ-i] 0 1W 0 

 c.   [e-i] ~ [i-i] -1L 0 0 
II.  /ɛ-i/  d.   [i-i] ~ [ɛ-i] 1W 1W 0 
   e.   [i-i] ~ [e-i] 1W 0 0 
III. /e-i/ f.   [e-i] ~ [i-i] -1L 0 0 

Taken together, these tableaux provide a potential explanation for the lack of a learning bias 
against saltatory height harmony and in favor of chain-shifting harmony in feature- and constraint-

 
9 For the four-height vowel inventory used in our simulations, the ASSIM family of constraints have the same violation 
profiles as the HARMONY constraints: ASSIM-IDENT(Height) corresponds to HARMONY(high), ASSIM-ADJ(Height) to 
HARMONY(ATR), and ASSIM-PARTIAL(Height) to HARMONY(low). 
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based accounts of these patterns. While two of the three markedness constraints implicated in these 
patterns are inconsistent for a learner attempting to set the constraint weights necessary to produce 
chain-shifting harmony, only one of these constraints is inconsistent for a learner of saltatory 
harmony. The learner of saltatory harmony, then, is able to update its constraint weights more 
quickly and efficiently, with fewer training items canceling out each other’s updates. We can 
compare this to the results of our simulations using the Gestural Gradual Learning Algorithm 
reported in section 4.2. In those simulations, it was learners of saltatory harmony who made 
inconsistent updates to segments’ blending strength values, resulting in ultimately slower setting 
of those values compared to learners of chain-shifting height harmony.  

In sum, under both the scalar and categorical faithfulness approach and the distinct faithfulness 
approach, unattested saltatory height harmony was learned and passed on to future generations of 
learners with at least as much stability as attested chain-shift harmony in simulations using the 
MaxEnt Generational Stability Model. These results indicate no presence of a learning bias against 
saltatory height harmony, and in some cases even indicate a bias in favor of such a pattern. We 
conclude that these approaches to capturing cases of underapplication opacity in vowel harmony 
are unable to predict the typological asymmetry by which chain-shifting height harmony is well-
attested and saltatory height harmony is not. 

6. Conclusion 

Derivationally opaque patterns pose a question for phonological theory: how can a 
phonological model be powerful enough to generate attested derivationally opaque patterns 
without generating a wide variety of unattested opaque patterns? In this paper, we have shown that 
in the Gestural Harmony Model, attested chain-shifting height harmony and unattested saltatory 
height harmony can both be straightforwardly modeled as the result of gestural overlap and 
blending between a trigger and an undergoer. While both types of opaque harmony patterns can 
be modeled in the Gestural Harmony Model, we showed via simulations utilizing the Gestural 
Gradual Learning Algorithm that unattested saltatory height harmony was much harder to learn, 
providing an explanation for its lack of attestation. We also showed that alternative constraint-
based approaches that can generate both of these derivationally opaque patterns cannot turn to 
learnability to explain the lack of attestation of saltatory height harmony; in all cases, saltation was 
as easy or easier to learn than a chain shift. We take this as evidence in favor of the Gestural 
Harmony Model’s representation of derivationally opaque vowel harmony patterns.  

Looking forward, synchronic chain shifts can be found in many phonological processes outside 
of height harmony, including consonant lenition, tone sandhi, and segment deletion. Evidence for 
similar synchronic saltatory patterns has also been found (White 2013; Smith to appear). Future 
work will examine whether the mechanism of gestural blending utilized here to represent chain-
shifting and saltatory height harmonies can be similarly used to model cases of underapplication 
opacity more generally, and whether these additional cases exhibit learning biases that might 
inform the typological picture. 
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